- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图通过 GEKKO 解决一个二维最优月球软着陆问题。我假设月亮没有旋转。飞船应该在月球表面轻轻着陆,即最终垂直速度v
和最终的水平速度 u
应该为零,最终高度r
应该是月球的半径。
这个问题可以说明如下:
状态和控制变量及方程如下(控制变量为推力 F 和姿态角 φ ):
我构建了 燃油优化问题如下(控制变量 φ 写成 f
):
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import time
import os
r0=1753000
v0=1675
time_start = time.time()
model = GEKKO()
nt = 501
model.time = np.linspace(0,1,nt)
# optimize final time
tf = model.FV(value=1.0,lb=0.1,ub=1000.0)
tf.STATUS = 1
# controls
F = model.MV(value=0,lb=0,ub=2000)
F.STATUS = 1
f = model.MV(value=-0.5*np.pi,lb=-0.5*np.pi,ub=0.5*np.pi)
f.STATUS = 1
# state variables
r = model.Var(value=r0,lb=1738000) # height
s = model.Var(value=0) # tru anomaly
v = model.Var(value=0) # vertical velocity
u = model.Var(value=v0) # horizional velocity
m = model.Var(value=600,lb=0,ub=600) # mass
# constants
mu = 4.90275*10**(12) # lunar gravitational constant
Isp = 300*9.8 # specific impulse
# Equations
model.Equation( r.dt() == tf * v )
model.Equation( s.dt() == tf * u/r )
model.Equation( v.dt() == tf * (F/m*model.cos(f)-mu/(r**2)+u**2/r) )
model.Equation( u.dt() == tf * (F/m*model.sin(f)-u*v/r) )
model.Equation( m.dt() == tf * (-F/Isp) )
# terminal constraints
_finalMask = np.zeros(nt)
_finalMask[-1] = 1.0
finalMask = model.Param(value=_finalMask)
model.Equation(v*finalMask>=0)
model.Equation(v*finalMask<=0.5)
model.fix_final(r,val=1738000)
model.fix_final(u,val=0)
model.Obj(-m*finalMask) # Objective function to be minimized
model.options.IMODE = 6
model.solver_options = ['max_iter 5000']
model.solve() # solve
time_end=time.time()
print('Calculation Time: ',time_end-time_start)
# scaled time
print('Landing Time: ' + str(tf.value[0]))
tm = np.linspace(0,tf.value[0],nt)
finaltime = tm[-1]
# PLOT
fig = plt.figure(1)
ax1 = fig.add_subplot(2, 3, 1)
ax2 = fig.add_subplot(2, 3, 2)
ax3 = fig.add_subplot(2, 3, 3)
ax4 = fig.add_subplot(2, 3, 4)
ax5 = fig.add_subplot(2, 3, 5)
ax6 = fig.add_subplot(2, 3, 6)
ax1.plot(tm,r.value,'k-',label=r'$r$')
ax1.set_xlabel('Time')
ax1.set_ylabel('r')
ax1.set_xlim(0,finaltime)
ax2.plot(tm,v.value,'b-',label=r'$v$')
ax2.set_xlabel('Time')
ax2.set_ylabel('v')
ax2.set_xlim(0,finaltime)
ax3.plot(tm,u.value,'g-',label=r'$w$')
ax3.set_xlabel('Time')
ax3.set_ylabel('u')
ax3.set_xlim(0,finaltime)
ax4.plot(tm,m.value,'y-',label=r'$m$')
ax4.set_xlabel('Time')
ax4.set_ylabel('m')
ax4.set_xlim(0,finaltime)
ax5.plot(tm,f.value,'c-',label=r'$f$')
ax5.set_xlabel('Time')
ax5.set_ylabel('f')
ax5.set_xlim(0,finaltime)
ax6.plot(tm,F.value,'r-',label=r'$F$')
ax6.set_xlabel('Time')
ax6.set_ylabel('F')
ax6.set_xlim(0,finaltime)
plt.tight_layout()
plt.show()
它可以找到一个与其他人的研究非常相似的解决方案。
f
出现了急转弯.这是 Not Acceptable ,因为角度
φ 应该不断地改变。
scale = 1e-6
model.Equation( r.dt() == tf * v )
model.Equation( r*s.dt()*scale == tf * u*scale )
model.Equation( m*(r**2)*v.dt()*scale**2 == tf * ((r**2)*F*model.cos(f)-mu*m+(u**2)*r*m)*(scale**2) )
model.Equation( m*r*u.dt()*scale == tf * (F*r*model.sin(f)-u*v*m)*scale )
model.Equation( Isp*m.dt() == tf * (-F) )
但失败了
Solution Not Found
EXIT: Converged to a point of local infeasibility. Problem may be infeasible.
f
,我将第二个控制变量改为角加速度
a
,状态方程变为
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
import time
import os
r0=1753000
v0=1675
time_start = time.time()
model = GEKKO() # remote=False
nt = 501
model.time = np.linspace(0,1,nt)
tf = model.FV(value=1.0,lb=0.1,ub=1000.0)
tf.STATUS = 1
# controls
F = model.MV(value=0,lb=0,ub=2000)
F.STATUS = 1
a = model.MV(value=0,lb=-0.5*np.pi/180,ub=0.5*np.pi/180)
a.STATUS = 1
# state variables
r = model.Var(value=r0,lb=1738000) # height
s = model.Var(value=0) # tru anomaly
v = model.Var(value=0) # vertical velocity
u = model.Var(value=v0) # horizional velocity
f = model.Var(value=-0.5*np.pi) # angle
w = model.Var(value=0, lb=-10*np.pi/180,ub=10*np.pi/180) # angular velocity
m = model.Var(value=600,lb=0,ub=600) # mass
# constants
mu = 4.90275*10**(12) # lunar gravitational constant
Isp = 300*9.8 # specific impulse
# Equations
model.Equation( r.dt() == tf * v )
model.Equation( s.dt() == tf * u/r )
model.Equation( v.dt() == tf * (F/m*model.cos(f)-mu/(r**2)+u**2/r) )
model.Equation( u.dt() == tf * (F/m*model.sin(f)-u*v/r) )
model.Equation( f.dt() == tf * (w - u/r) ) # ---newly added
model.Equation( w.dt() == tf * a ) # ---newly added
model.Equation( m.dt() == tf * (-F/Isp) )
# terminal constraints
_finalMask = np.zeros(nt)
_finalMask[-1] = 1.0
finalMask = model.Param(value=_finalMask)
model.Equation(v*finalMask>=0)
model.Equation(v*finalMask<=0.5)
model.Equation(f*finalMask>=-5*np.pi/180) # ***newly added
model.Equation(f*finalMask<=5*np.pi/180) # ***newly added
model.fix_final(r,val=1738000)
model.fix_final(u,val=0)
model.Obj(-m*finalMask) # Objective function to be minimized
model.options.IMODE = 6
model.solver_options = ['max_iter 99999']
model.solve() # solve
time_end=time.time()
print('Calculation Time: ',time_end-time_start)
# scaled time
print('Landing Time: ' + str(tf.value[0]))
tm = np.linspace(0,tf.value[0],nt)
finaltime = tm[-1]
# PLOT
fig = plt.figure(1)
ax1 = fig.add_subplot(2, 4, 1)
ax2 = fig.add_subplot(2, 4, 2)
ax3 = fig.add_subplot(2, 4, 3)
ax4 = fig.add_subplot(2, 4, 4)
ax5 = fig.add_subplot(2, 4, 5)
ax6 = fig.add_subplot(2, 4, 6)
ax7 = fig.add_subplot(2, 4, 7)
ax8 = fig.add_subplot(2, 4, 8)
ax1.plot(tm,r.value,'k-',label=r'$r$')
ax1.set_xlabel('Time')
ax1.set_ylabel('r')
ax1.set_xlim(0,finaltime)
ax2.plot(tm,v.value,'b-',label=r'$v$')
ax2.set_xlabel('Time')
ax2.set_ylabel('v')
ax2.set_xlim(0,finaltime)
ax3.plot(tm,u.value,'g-',label=r'$u$')
ax3.set_xlabel('Time')
ax3.set_ylabel('u')
ax3.set_xlim(0,finaltime)
ax4.plot(tm,m.value,'y-',label=r'$m$')
ax4.set_xlabel('Time')
ax4.set_ylabel('m')
ax4.set_xlim(0,finaltime)
ax5.plot(tm,F.value,'r-',label=r'$F$')
ax5.set_xlabel('Time')
ax5.set_ylabel('F')
ax5.set_xlim(0,finaltime)
ax6.plot(tm,f.value,'k-',label=r'$f$')
ax6.set_xlabel('Time')
ax6.set_ylabel('f')
ax6.set_xlim(0,finaltime)
ax7.plot(tm,w.value,'b-',label=r'$w$')
ax7.set_xlabel('Time')
ax7.set_ylabel('w')
ax7.set_xlim(0,finaltime)
ax8.plot(tm,a.value,'r-',label=r'$a$')
ax8.set_xlabel('Time')
ax8.set_ylabel('a')
ax8.set_xlim(0,finaltime)
plt.tight_layout()
plt.show()
但是,我已经运行了很多小时的代码,但没有得到解决方案或结果。更具体地说,它在某些迭代时停止:
model.Equation(r*finalMask>=1738000)
model.Equation(r*finalMask<=1738001)
model.Equation(v*finalMask>=0)
model.Equation(v*finalMask<=0.5)
model.Equation(u*finalMask>=-0.5)
model.Equation(u*finalMask<=0.5)
model.Equation(f*finalMask>=-5*np.pi/180)
model.Equation(f*finalMask<=5*np.pi/180)
最佳答案
我无法运行您的代码,因为 w
未定义但可能已更改为 u
.此外,有很多地方需要分号来分隔同一行的语句。我试图获得一个可以运行但尚未成功的版本。您能否验证发布的代码是否运行以显示您描述的问题,或者发布成功运行的更新代码?
我修改了方程式以与您的问题陈述保持一致,并避免除以零可能出现的潜在问题。我还包括了一个比例因子,因为一些方程有 r**2
这是一个非常大的数字。
# equations
scale = 1e-6
model.Equation( r.dt() == tf * v )
model.Equation( r * s.dt()*scale == tf * u*scale )
model.Equation( m * (r**2) * v.dt() * scale**2 \
== tf * ((r**2)*F*model.cos(f)-mu+(u**2)*(r**3)) *(scale**2))
model.Equation( m * r * u.dt()*scale == tf * (-u*v*m+F*model.cos(f))*scale )
model.Equation( Isp * m.dt() == -tf * F )
from gekko import GEKKO
import numpy as np
import matplotlib.pyplot as plt
model = GEKKO() # initialize gekko
nt = 501
model.time = np.linspace(0,1,nt)
# optimize final time
tf = model.FV(value=100.0,lb=1.0,ub=1000.0)
tf.STATUS = 1
# controls
F = model.MV(value=0,lb=0,ub=1500)
F.STATUS = 1
f = model.MV(value=0,lb=-0.5*np.pi,ub=0.5*np.pi)
f.STATUS = 1
# state variables
# height = 1753 km
r = model.Var(value=1753000,lb=1738000)
# vertical velocity = 0 m/s
v = model.Var(value=0)
# azimuth = 0 rad
s = model.Var(value=0)
# azimuth angular velocity rad/s
u = model.Var(value=9.65e-4)
# mass = 600 kg
m = model.Var(value=600,lb=0,ub=600)
# constants
mu = 4.90275e12 # lunar gravitational constant
Isp = 300*9.8 # specific impulse
# equations
scale = 1e-6
model.Equation( r.dt() == tf * v )
model.Equation( r * s.dt()*scale == tf * u*scale )
model.Equation( m * (r**2) * v.dt() * scale**2 \
== tf * ((r**2)*F*model.cos(f)-mu+(u**2)*(r**3)) *(scale**2))
model.Equation( m * r * u.dt()*scale == tf * (-u*v*m+F*model.cos(f))*scale )
model.Equation( Isp * m.dt() == -tf * F )
# terminal conditions
_finalMask = np.zeros(nt)
_finalMask[-1] = 1.0
finalMask = model.Param(value=_finalMask)
# Terminal Constraint 1
if False:
model.Equation((r-1738000)*finalMask==0)
model.Equation(v*finalMask==0)
model.Equation(u*finalMask==0)
# Terminal Constraint 2
if False:
model.Equation((r-1738000)*finalMask<=0)
model.Equation(v*finalMask<=0)
model.Equation(u*finalMask<=0)
if True:
# terminal constraints
_finalMask = np.zeros(nt)
_finalMask[-1] = 1.0
finalMask = model.Param(value=_finalMask)
model.Equation(v*finalMask>=0)
model.Equation(v*finalMask<=0.2)
model.fix_final(r,val=1738000)
model.fix_final(u,val=0)
model.Minimize(tf)
model.options.IMODE = 6
model.solve()
print('Final Time: ' + str(tf.value[0]))
tm = np.linspace(0,tf.value[0],nt)
# PLOT
fig = plt.figure(1)
ax1 = fig.add_subplot(2, 3, 1)
ax2 = fig.add_subplot(2, 3, 2)
ax3 = fig.add_subplot(2, 3, 3)
ax4 = fig.add_subplot(2, 3, 4)
ax5 = fig.add_subplot(2, 3, 5)
ax6 = fig.add_subplot(2, 3, 6)
ax1.plot(tm,r.value,'k-',label=r'$r$')
ax1.set_xlabel('Time'); ax1.set_ylabel('r')
ax2.plot(tm,v.value,'b-',label=r'$v$')
ax2.set_xlabel('Time'); ax2.set_ylabel('v')
ax3.plot(tm,s.value,'g-',label=r'$s$')
ax3.set_xlabel('Time'); ax3.set_ylabel('s')
ax4.plot(tm,f.value,'y-',label=r'$f$')
ax4.set_xlabel('Time'); ax4.set_ylabel('f')
ax5.plot(tm,F.value,'c-',label=r'$F$')
ax5.set_xlabel('Time'); ax5.set_ylabel('F')
ax6.plot(tm,m.value,'r-',label=r'$m$')
ax6.set_xlabel('Time'); ax6.set_ylabel('m')
plt.tight_layout()
plt.show()
如果所有变量都在 1 附近并且方程残差从大约相同的水平开始,则数值解更容易求解。 Gekko 根据初始条件自动缩放变量。
# solve first time without adjustable tf
tf.STATUS = 0
model.solve()
# solve again with tf adjustable
tf.STATUS = 1
# don't advance the initial condition
model.options.TIME_SHIFT=0
model.solve()
另一种选择是用
F.UPPER=1500
解决然后尝试
F.UPPER=2000
为另一个解决。
Jennings optimal control problem是另一个可能有帮助的例子。
关于python - GEKKO如何解决一个最优的月球软着陆问题?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65934123/
我很好奇 IPOPT 求解器的每个求解器输出列的建议。有什么 Material 可以解释这个吗? 以下是IPOPT求解器的求解器输出。我想知道 inf_pr , inf_du , lg(mu) , |
我是 Python 中的 Gekko 库的新手,想知道我是否可以在 Gekko 中按照 LP 公式建模。 LP 公式意味着我想找到最佳的电器调度类次,以使总电力成本最小化。但是,如约束所示,每天的总耗
当使用 max2 在 Python GEKKO 中按顺序求解模型(即 IMODE >= 4)失败时和 max3 GEKKO 附带的功能。 这是针对用例,其中 np.maximum或标准max函数将 G
我正在学习如何根据实验室批量 react 器数据使用 GEKKO 进行动力学参数估计,该数据主要由 A、C 和 P 三种物质的浓度分布组成。为了我的问题,我使用的是我以前的模型精选于 question
我正在尝试使用 GEKKO 优化电力系统.具体使用 MPC 到 IEEE 14 bus测试用例。 该系统包含 14 条总线,模型由状态变量 theta 和 omega(分别为发电机的功率角和旋转频率)
EDIT2:好吧,我是个白痴。我关于横向误差的数学有问题。我已经将该等式重写为更简单的东西并且它现在可以工作了。我会离开这里以防它对任何人有用。但如果可能的话,我仍然希望有人能确保我没有做任何过分的事
我终于回到了我的项目上并找到了我的下一个障碍。 我有一个封闭的歧管: 这也是游戏即时建模中的示例轨迹 我可以让我的系统像普通汽车一样运行。我很好奇在 gekko 中合并这种类型的约束的最佳方法是什么。
Gekko 中是否有一个类轮来检索拉格朗日乘数(例如 GAMS 中的边际),或者如果不是其他方式的单行? 谢谢您的帮助。 最佳答案 这是检索拉格朗日乘数的一行。 lam = np.loadtxt(m.
我喜欢在 y 模型中约束变量值 u -0.5) # Model objective m.Obj(-Tc) # options m.options.IMODE = 6 # Problem type:
我正在尝试解决 gekko 中的一个简单混合操作。 blender mx采用两个入口流 Feed1和 Feed2 .预期结果是导出流的质量流量mx.outlet应该是入口流的质量流量的总和。 这是我尝
我想将 LINGO 代码转换为 Python GEKKO 代码。这是 Lingo 代码、lingo 结果和 gekko 代码。我不能写第二个和第三个约束。它返回索引错误,但我不明白为什么?有人可以帮忙
我正在研究一个相当大的 MINLP,模型大小约为 270,000 个变量和方程 - 5,000 个二进制文件。将 Gekko 与 APOT 求解器结合使用,我可以在大约 868 秒(不到 15 分钟)
我有一个 RTO 问题,我想用一些时间相关的参数解决多个模拟时间步长。但是,我在运行时遇到了困难,并注意到总系统时间与实际求解时间相比相对较大。因此,我试图减少总的解析时间,因为所有方程式都保持不变—
intpolatn 函数从 GEKKO 最大化目标函数接收整数变量 u_hub_next。 intpolatn 只是为了检查整数是否落在 windvel[0] 和 windvel[1] 之间以及后续的
我正在优化的问题是在传输网络中 build 发电厂。为此,我在每辆公交车上放置了发电厂,并让优化告诉我应该 build 哪些发电厂以最大限度地降低运行成本。 为了模拟植物的放置,我尝试使用一组二进制变
我在 super 计算中心本地使用 Gekko。我有一个解决 MINLP 的脚本,它可以轻松扩展以添加更多混合整数变量。我想了解随着变量数量的增加以及我需要请求的内存量,计算的成本会有多高。 当我只请
我目前正在使用 MPC 让 TCLab 加热器达到某个设定点温度。我试图让 MHE 每 50 秒更新一次某些参数值。我有一个以前的 MPC 模型,效果很好,我尝试在我的主循环中添加一个部分,让它切换以
使用 Gekko 拟合数据的数值 ODE 解。 嗨,大家好! 我想知道是否可以使用 GEKKO 拟合 ODE 的系数。 我尝试复制 example given here 失败. 这是我想出的(但有缺陷
祝大家节日快乐!我终于有一些时间来处理我的项目了,当然我和往常一样被困住了,哈哈。 我正在寻找可以让我能够模拟以下内容的指导/示例: 我有一个二进制(0 或 1)输入(我们称之为“跳跃”),我希望它只
我无法理解从 GEKKO 模型收到的错误消息。 就上下文而言,该模型应该优化气 Spring 辅助门的气 Spring 力和尺寸参数,以最大限度地减少运算符(operator)关闭门所需的力。我的目的
我是一名优秀的程序员,十分优秀!