gpt4 book ai didi

scala - 来自 Dataset 的 RDD 导致 Spark 2.x 的序列化错误

转载 作者:行者123 更新时间:2023-12-03 20:22:26 26 4
gpt4 key购买 nike

我有一个使用 Databricks 笔记本从数据集创建的 RDD。

当我尝试从中获取具体值时,它只是失败并显示序列化错误消息。

这是我获取数据的地方(PageCount 是一个 Case 类):

val pcDf = spark.sql("SELECT * FROM pagecounts20160801")
val pcDs = pcDf.as[PageCount]
val pcRdd = pcDs.rdd

然后当我这样做时:
pcRdd.take(10)

我得到以下异常:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0.0 in stage 82.0 (TID 2474) had a not serializable result: org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection

即使对数据集的相同尝试有效:
pcDs.take(10)

编辑 :

这是完整的堆栈跟踪
Serialization stack:
- object not serializable (class: org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection, value: <function1>)
- field (class: org.apache.spark.sql.execution.datasources.FileFormat$$anon$1, name: appendPartitionColumns, type: class org.apache.spark.sql.catalyst.expressions.UnsafeProjection)
- object (class org.apache.spark.sql.execution.datasources.FileFormat$$anon$1, <function1>)
- field (class: org.apache.spark.sql.execution.datasources.FileScanRDD, name: readFunction, type: interface scala.Function1)
- object (class org.apache.spark.sql.execution.datasources.FileScanRDD, FileScanRDD[1095] at )
- field (class: org.apache.spark.NarrowDependency, name: _rdd, type: class org.apache.spark.rdd.RDD)
- object (class org.apache.spark.OneToOneDependency, org.apache.spark.OneToOneDependency@502bfe49)
- writeObject data (class: scala.collection.immutable.List$SerializationProxy)
- object (class scala.collection.immutable.List$SerializationProxy, scala.collection.immutable.List$SerializationProxy@51dc790)
- writeReplace data (class: scala.collection.immutable.List$SerializationProxy)
- object (class scala.collection.immutable.$colon$colon, List(org.apache.spark.OneToOneDependency@502bfe49))
- field (class: org.apache.spark.rdd.RDD, name: org$apache$spark$rdd$RDD$$dependencies_, type: interface scala.collection.Seq)
- object (class org.apache.spark.rdd.MapPartitionsRDD, MapPartitionsRDD[1096] at )
- field (class: org.apache.spark.NarrowDependency, name: _rdd, type: class org.apache.spark.rdd.RDD)
- object (class org.apache.spark.OneToOneDependency, org.apache.spark.OneToOneDependency@52ce8951)
- writeObject data (class: scala.collection.immutable.List$SerializationProxy)
- object (class scala.collection.immutable.List$SerializationProxy, scala.collection.immutable.List$SerializationProxy@57850f0)
- writeReplace data (class: scala.collection.immutable.List$SerializationProxy)
- object (class scala.collection.immutable.$colon$colon, List(org.apache.spark.OneToOneDependency@52ce8951))
- field (class: org.apache.spark.rdd.RDD, name: org$apache$spark$rdd$RDD$$dependencies_, type: interface scala.collection.Seq)
- object (class org.apache.spark.rdd.MapPartitionsRDD, MapPartitionsRDD[1097] at )
- field (class: org.apache.spark.NarrowDependency, name: _rdd, type: class org.apache.spark.rdd.RDD)
- object (class org.apache.spark.OneToOneDependency, org.apache.spark.OneToOneDependency@7e99329a)
- writeObject data (class: scala.collection.immutable.List$SerializationProxy)
- object (class scala.collection.immutable.List$SerializationProxy, scala.collection.immutable.List$SerializationProxy@792f3145)
- writeReplace data (class: scala.collection.immutable.List$SerializationProxy)
- object (class scala.collection.immutable.$colon$colon, List(org.apache.spark.OneToOneDependency@7e99329a))
- field (class: org.apache.spark.rdd.RDD, name: org$apache$spark$rdd$RDD$$dependencies_, type: interface scala.collection.Seq)
- object (class org.apache.spark.rdd.MapPartitionsRDD, MapPartitionsRDD[1098] at )
- field (class: org.apache.spark.sql.Dataset, name: rdd, type: class org.apache.spark.rdd.RDD)
- object (class org.apache.spark.sql.Dataset, Invalid tree; null:
null)
- field (class: lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw, name: pcDs, type: class org.apache.spark.sql.Dataset)
- object (class lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw, lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw@3482035d)
- field (class: lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw$PageCount, name: $outer, type: class lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw)
- object (class lineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw$PageCount, PageCount(de.b,Spezial:Linkliste/Datei:Playing_card_diamond_9.svg,1,6053))
- element of array (index: 0)
- array (class [Llineb9de310f01c84f49b76c6c6295a1393c121.$read$$iw$$iw$$iw$$iw$PageCount;, size 10)
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1452)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1440)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1439)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1439)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:811)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:811)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1665)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1620)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1609)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:632)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1868)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1881)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1894)
at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1311)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:358)
at org.apache.spark.rdd.RDD.take(RDD.scala:1285)
at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw$$iw$$iw$$iw.<init>(<console>:33)
at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw$$iw$$iw.<init>(<console>:40)
at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw$$iw.<init>(<console>:42)
at lineb9de310f01c84f49b76c6c6295a1393c137.$read$$iw.<init>(<console>:44)
at lineb9de310f01c84f49b76c6c6295a1393c137.$eval$.$print$lzycompute(<console>:7)
at lineb9de310f01c84f49b76c6c6295a1393c137.$eval$.$print(<console>:6)

最佳答案

  • 页数 类肯定有不可序列化的引用(一些非 transient 不可序列化的成员,或者可能有相同问题的父类型)。无法序列化给定的对象让 Spark 尝试序列化封闭范围,直到越来越多的成员,包括 FileFormat 的成员在路上的某个地方, - Janino 生成的投影(设计上不可序列化)。
    这只是坏目标对象(PageCount)序列化的副作用。

  • spark的相关代码 FileFormat.scala (应该用@transient 标记以真正避免序列化,以防“appendPartitionColumns”曾经实现)
    // Using lazy val to avoid serialization
    private lazy val appendPartitionColumns =
    GenerateUnsafeProjection.generate(fullSchema, fullSchema)

    尽管在常规情况下,上述这种“非预期的”序列化永远不会发生,直到用户定义的类型序列化成功。
  • Spark RDD (原始类型!Spark 不知道它的全局模式)序列化涉及物化期间的完整对象序列化(对象数据和对象“模式”,类型)。序列化的默认机制是 Java 序列化器(因此您可以尝试使用 Java 序列化器序列化 PageCount ,这可能会揭示这种类型的问题),并且可以替换为更高效的 Kryo 序列化器(它将序列化但是将对象放入 blob 中,这样我们将失去架构,并且将无法应用需要列访问的 sql)。这就是为什么 RDD 访问会触发序列化问题
  • 数据框 /数据集 是强类型的,它们绑定(bind)到 Spark 已知的模式。因此,对于 Spark,不需要在节点之间传递对象结构,只传递数据。
    这就是实现底层对象类型 PageCount 的 Dataset/Dataframe 没有问题的原因。
  • 关于scala - 来自 Dataset 的 RDD 导致 Spark 2.x 的序列化错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40320129/

    26 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com