gpt4 book ai didi

java - 将FFT应用于java中的录音

转载 作者:行者123 更新时间:2023-12-03 20:18:45 25 4
gpt4 key购买 nike

我在这个网站上看到过类似的问题,但我的问题有点不同。我用来捕获音频的代码是 this .我想简单地获取捕获的音频并对其应用 256 点的 FFT。

我意识到这个 line count = line.read(buffer, 0, buffer.length); 将音频分解为“ block ”。

还可以找到我正在使用的 FFT here .

我的问题是:

  1. 我想知道是否有一种方法可以将 FFT 应用于整个录音,而不仅仅是缓冲量。
  2. 我看到 FFT 的代码需要实部和虚部,我如何从带有音频文件的代码中获取实部和虚部。

最佳答案

javax.sound.sampled 包所做的就是从文件中读取原始字节并将它们写入输出。因此,您必须执行一个“中间”步骤,即自己转换样本。

下面显示了如何为 PCM 执行此操作(带有注释),取 self 的代码示例 WaveformDemo :

public static float[] unpack(
byte[] bytes,
long[] transfer,
float[] samples,
int bvalid,
AudioFormat fmt
) {
if(fmt.getEncoding() != AudioFormat.Encoding.PCM_SIGNED
&& fmt.getEncoding() != AudioFormat.Encoding.PCM_UNSIGNED) {

return samples;
}

final int bitsPerSample = fmt.getSampleSizeInBits();
final int bytesPerSample = bitsPerSample / 8;
final int normalBytes = normalBytesFromBits(bitsPerSample);

/*
* not the most DRY way to do this but it's a bit more efficient.
* otherwise there would either have to be 4 separate methods for
* each combination of endianness/signedness or do it all in one
* loop and check the format for each sample.
*
* a helper array (transfer) allows the logic to be split up
* but without being too repetetive.
*
* here there are two loops converting bytes to raw long samples.
* integral primitives in Java get sign extended when they are
* promoted to a larger type so the & 0xffL mask keeps them intact.
*
*/

if(fmt.isBigEndian()) {
for(int i = 0, k = 0, b; i < bvalid; i += normalBytes, k++) {
transfer[k] = 0L;

int least = i + normalBytes - 1;
for(b = 0; b < normalBytes; b++) {
transfer[k] |= (bytes[least - b] & 0xffL) << (8 * b);
}
}
} else {
for(int i = 0, k = 0, b; i < bvalid; i += normalBytes, k++) {
transfer[k] = 0L;

for(b = 0; b < normalBytes; b++) {
transfer[k] |= (bytes[i + b] & 0xffL) << (8 * b);
}
}
}

final long fullScale = (long)Math.pow(2.0, bitsPerSample - 1);

/*
* the OR is not quite enough to convert,
* the signage needs to be corrected.
*
*/

if(fmt.getEncoding() == AudioFormat.Encoding.PCM_SIGNED) {

/*
* if the samples were signed, they must be
* extended to the 64-bit long.
*
* so first check if the sign bit was set
* and if so, extend it.
*
* as an example, imagining these were 4-bit samples originally
* and the destination is 8-bit, a mask can be constructed
* with -1 (all bits 1) and a left shift:
*
* 11111111
* << (4 - 1)
* ===========
* 11111000
*
* (except the destination is 64-bit and the original
* bit depth from the file could be anything.)
*
* then supposing we have a hypothetical sample -5
* that ought to be negative, an AND can be used to check it:
*
* 00001011
* & 11111000
* ==========
* 00001000
*
* and an OR can be used to extend it:
*
* 00001011
* | 11111000
* ==========
* 11111011
*
*/

final long signMask = -1L << bitsPerSample - 1L;

for(int i = 0; i < transfer.length; i++) {
if((transfer[i] & signMask) != 0L) {
transfer[i] |= signMask;
}
}
} else {

/*
* unsigned samples are easier since they
* will be read correctly in to the long.
*
* so just sign them:
* subtract 2^(bits - 1) so the center is 0.
*
*/

for(int i = 0; i < transfer.length; i++) {
transfer[i] -= fullScale;
}
}

/* finally normalize to range of -1.0f to 1.0f */

for(int i = 0; i < transfer.length; i++) {
samples[i] = (float)transfer[i] / (float)fullScale;
}

return samples;
}

public static int normalBytesFromBits(int bitsPerSample) {

/*
* some formats allow for bit depths in non-multiples of 8.
* they will, however, typically pad so the samples are stored
* that way. AIFF is one of these formats.
*
* so the expression:
*
* bitsPerSample + 7 >> 3
*
* computes a division of 8 rounding up (for positive numbers).
*
* this is basically equivalent to:
*
* (int)Math.ceil(bitsPerSample / 8.0)
*
*/

return bitsPerSample + 7 >> 3;
}

那段代码假定 float[] 而您的 FFT 需要 double[] 但这是一个相当简单的更改。 transfersamples 是长度等于 bytes.length * normalBytes 的数组,bvalid阅读。我的代码示例采用 AudioInputStream,但相同的转换应该适用于 TargetDataLine。我不确定您是否可以从字面上复制和粘贴它,但这是一个示例。

关于你的两个问题:

  1. 您可以对整个记录进行很长的 FFT,或者对每个缓冲区的 FFT 进行平均。
  2. 您链接到的 FFT 计算就地。所以实部是音频样本,虚部是长度等于实部的空数组(用零填充)。

但是当 FFT 完成后,您仍然需要做一些我没有看到链接类在做的事情:

  • 转换为极坐标。
  • 通常丢弃负频率(频谱的整个上半部分是下半部分的镜像)。
  • 可能通过将结果幅度(实部)除以变换的长度来缩放它们。

编辑,相关:

关于java - 将FFT应用于java中的录音,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21470012/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com