作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经引用 this 编写了自己的代码精彩的教程,根据我在类 AttentionModel 中的理解,将注意力与波束搜索结合使用时,我无法获得结果,_build_decoder_cell 函数为推理模式创建单独的解码器单元和注意力包装器,假设这个(我认为这是不正确的,并且找不到绕过它),
with tf.name_scope("Decoder"):
mem_units = 2*dim
dec_cell = tf.contrib.rnn.BasicLSTMCell( 2*dim )
beam_cel = tf.contrib.rnn.BasicLSTMCell( 2*dim )
beam_width = 3
out_layer = Dense( output_vocab_size )
with tf.name_scope("Training"):
attn_mech = tf.contrib.seq2seq.BahdanauAttention( num_units = mem_units, memory = enc_rnn_out, normalize=True)
attn_cell = tf.contrib.seq2seq.AttentionWrapper( cell = dec_cell,attention_mechanism = attn_mech )
batch_size = tf.shape(enc_rnn_out)[0]
initial_state = attn_cell.zero_state( batch_size = batch_size , dtype=tf.float32 )
initial_state = initial_state.clone(cell_state = enc_rnn_state)
helper = tf.contrib.seq2seq.TrainingHelper( inputs = emb_x_y , sequence_length = seq_len )
decoder = tf.contrib.seq2seq.BasicDecoder( cell = attn_cell, helper = helper, initial_state = initial_state ,output_layer=out_layer )
outputs, final_state, final_sequence_lengths= tf.contrib.seq2seq.dynamic_decode(decoder=decoder,impute_finished=True)
training_logits = tf.identity(outputs.rnn_output )
training_pred = tf.identity(outputs.sample_id )
with tf.name_scope("Inference"):
enc_rnn_out_beam = tf.contrib.seq2seq.tile_batch( enc_rnn_out , beam_width )
seq_len_beam = tf.contrib.seq2seq.tile_batch( seq_len , beam_width )
enc_rnn_state_beam = tf.contrib.seq2seq.tile_batch( enc_rnn_state , beam_width )
batch_size_beam = tf.shape(enc_rnn_out_beam)[0] # now batch size is beam_width times
# start tokens mean be the original batch size so divide
start_tokens = tf.tile(tf.constant([27], dtype=tf.int32), [ batch_size_beam//beam_width ] )
end_token = 0
attn_mech_beam = tf.contrib.seq2seq.BahdanauAttention( num_units = mem_units, memory = enc_rnn_out_beam, normalize=True)
cell_beam = tf.contrib.seq2seq.AttentionWrapper(cell=beam_cel,attention_mechanism=attn_mech_beam,attention_layer_size=mem_units)
initial_state_beam = cell_beam.zero_state(batch_size=batch_size_beam,dtype=tf.float32).clone(cell_state=enc_rnn_state_beam)
my_decoder = tf.contrib.seq2seq.BeamSearchDecoder( cell = cell_beam,
embedding = emb_out,
start_tokens = start_tokens,
end_token = end_token,
initial_state = initial_state_beam,
beam_width = beam_width
,output_layer=out_layer)
beam_output, t1 , t2 = tf.contrib.seq2seq.dynamic_decode( my_decoder,
maximum_iterations=maxlen )
beam_logits = tf.no_op()
beam_sample_id = beam_output.predicted_ids
最佳答案
我不确定“我无法获得结果”是什么意思,但我假设您的模型没有利用训练时学到的知识。
如果是这种情况,那么首先您需要知道这一切都与变量共享有关,您需要做的第一件事是摆脱训练和推断之间的不同变量范围,而是需要使用一些像
去除那个
with tf.name_scope("Training"):
with tf.variable_scope("myScope"):
with tf.name_scope("Inference"):
with tf.variable_scope("myScope" , reuse=True):
with tf.variable_scope("myScope" )
enc_rnn_out = tf.contrib.seq2seq.tile_batch( enc_rnn_out , 1 )
seq_len = tf.contrib.seq2seq.tile_batch( seq_len , 1 )
enc_rnn_state = tf.contrib.seq2seq.tile_batch( enc_rnn_state , 1 )
关于tensorflow - 在 tensorflow 中使用波束搜索实现注意力,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46021216/
我是一名优秀的程序员,十分优秀!