- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
暗网训练命令不产生任何输出,退出过早(与其他CNN训练项目相比)
我已按照“如何训练(检测您的自定义对象)”的说明进行操作。
yolo-obj.cfg 进行了相应的配置。
darknet.exe 已使用 MSVS 2017 成功编译和构建。
我有 3 个新的自定义类:
obj.data 文件:
classes= 3
train = data/train.txt
valid = data/train.txt
names = data/obj.names
backup = backup/
ring
watch
necklace
C:\Users\claw\Downloads\darknet-master\darknet-master\build\darknet\x64>darknet_no_gpu.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74
yolo-obj
layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 -> 416 x 416 x 32 0.299 BF
1 conv 64 3 x 3 / 2 416 x 416 x 32 -> 208 x 208 x 64 1.595 BF
2 conv 32 1 x 1 / 1 208 x 208 x 64 -> 208 x 208 x 32 0.177 BF
3 conv 64 3 x 3 / 1 208 x 208 x 32 -> 208 x 208 x 64 1.595 BF
4 Shortcut Layer: 1
5 conv 128 3 x 3 / 2 208 x 208 x 64 -> 104 x 104 x 128 1.595 BF
6 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
7 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
8 Shortcut Layer: 5
9 conv 64 1 x 1 / 1 104 x 104 x 128 -> 104 x 104 x 64 0.177 BF
10 conv 128 3 x 3 / 1 104 x 104 x 64 -> 104 x 104 x 128 1.595 BF
11 Shortcut Layer: 8
12 conv 256 3 x 3 / 2 104 x 104 x 128 -> 52 x 52 x 256 1.595 BF
13 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
14 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
15 Shortcut Layer: 12
16 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
17 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
18 Shortcut Layer: 15
19 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
20 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
21 Shortcut Layer: 18
22 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
23 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
24 Shortcut Layer: 21
25 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
26 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
27 Shortcut Layer: 24
28 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
29 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
30 Shortcut Layer: 27
31 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
32 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
33 Shortcut Layer: 30
34 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
35 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
36 Shortcut Layer: 33
37 conv 512 3 x 3 / 2 52 x 52 x 256 -> 26 x 26 x 512 1.595 BF
38 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
39 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
40 Shortcut Layer: 37
41 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
42 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
43 Shortcut Layer: 40
44 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
45 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
46 Shortcut Layer: 43
47 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
48 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
49 Shortcut Layer: 46
50 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
51 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
52 Shortcut Layer: 49
53 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
54 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
55 Shortcut Layer: 52
56 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
57 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
58 Shortcut Layer: 55
59 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
60 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
61 Shortcut Layer: 58
62 conv 1024 3 x 3 / 2 26 x 26 x 512 -> 13 x 13 x1024 1.595 BF
63 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
64 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
65 Shortcut Layer: 62
66 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
67 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
68 Shortcut Layer: 65
69 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
70 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
71 Shortcut Layer: 68
72 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
73 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
74 Shortcut Layer: 71
75 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
76 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
77 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
78 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
79 conv 512 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 512 0.177 BF
80 conv 1024 3 x 3 / 1 13 x 13 x 512 -> 13 x 13 x1024 1.595 BF
81 conv 24 1 x 1 / 1 13 x 13 x1024 -> 13 x 13 x 24 0.008 BF
82 yolo
83 route 79
84 conv 256 1 x 1 / 1 13 x 13 x 512 -> 13 x 13 x 256 0.044 BF
85 upsample 2x 13 x 13 x 256 -> 26 x 26 x 256
86 route 85 61
87 conv 256 1 x 1 / 1 26 x 26 x 768 -> 26 x 26 x 256 0.266 BF
88 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
89 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
90 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
91 conv 256 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 256 0.177 BF
92 conv 512 3 x 3 / 1 26 x 26 x 256 -> 26 x 26 x 512 1.595 BF
93 conv 24 1 x 1 / 1 26 x 26 x 512 -> 26 x 26 x 24 0.017 BF
94 yolo
95 route 91
96 conv 128 1 x 1 / 1 26 x 26 x 256 -> 26 x 26 x 128 0.044 BF
97 upsample 2x 26 x 26 x 128 -> 52 x 52 x 128
98 route 97 36
99 conv 128 1 x 1 / 1 52 x 52 x 384 -> 52 x 52 x 128 0.266 BF
100 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
101 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
102 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
103 conv 128 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 128 0.177 BF
104 conv 256 3 x 3 / 1 52 x 52 x 128 -> 52 x 52 x 256 1.595 BF
105 conv 24 1 x 1 / 1 52 x 52 x 256 -> 52 x 52 x 24 0.033 BF
106 yolo
Total BFLOPS 65.304
Loading weights from darknet53.conv.74...
seen 64
Done!
Learning Rate: 0.001, Momentum: 0.9, Decay: 0.0005
If error occurs - run training with flag: -dont_show
Resizing
416 x 416
Cannot load image "data/img/ring chic-criss-cross-adjustable-ad-ring.jpg"
Loaded: 1.143984 seconds
Used AVX
Region 82 Avg IOU: 0.333570, Class: 0.602019, Obj: 0.402860, No Obj: 0.528741, .5R: 0.000000, .75R: 0.000000, count: 4
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521660, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514523, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.329878, Class: 0.570290, Obj: 0.611294, No Obj: 0.528309, .5R: 0.250000, .75R: 0.000000, count: 4
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521499, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514392, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.575794, Class: 0.539979, Obj: 0.316475, No Obj: 0.528604, .5R: 0.500000, .75R: 0.500000, count: 2
Region 94 Avg IOU: 0.312451, Class: 0.125449, Obj: 0.238739, No Obj: 0.521500, .5R: 0.000000, .75R: 0.000000, count: 1
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514025, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.257590, Class: 0.547629, Obj: 0.447064, No Obj: 0.527685, .5R: 0.000000, .75R: 0.000000, count: 3
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521665, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.515411, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.297573, Class: 0.436722, Obj: 0.389306, No Obj: 0.528302, .5R: 0.500000, .75R: 0.000000, count: 4
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521452, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.513978, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.191856, Class: 0.645887, Obj: 0.364560, No Obj: 0.528137, .5R: 0.000000, .75R: 0.000000, count: 5
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521575, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514143, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.475039, Class: 0.419801, Obj: 0.578539, No Obj: 0.527876, .5R: 0.500000, .75R: 0.500000, count: 2
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521085, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514371, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.264798, Class: 0.416162, Obj: 0.462117, No Obj: 0.527412, .5R: 0.000000, .75R: 0.000000, count: 5
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521446, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514205, .5R: -nan(ind), .75R: -nan(ind), count: 0
1: 1003.093994, 1003.093994 avg loss, 0.000000 rate, 1056.320056 seconds, 64 images
Loaded: 0.000000 seconds
Cannot load image "data/img/necklace 570239071_2906.jpg"
Cannot load image "data/img/necklace 570239072_2906.jpg"
Cannot load image "data/img/necklace 10019367_no_place_like_roam_necklace_green_main.jpg"
Region 82 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.527527, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521694, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514430, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.213376, Class: 0.587271, Obj: 0.565966, No Obj: 0.528763, .5R: 0.000000, .75R: 0.000000, count: 5
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.522077, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.515318, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.314485, Class: 0.501796, Obj: 0.458959, No Obj: 0.528414, .5R: 0.000000, .75R: 0.000000, count: 2
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521397, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514781, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.278535, Class: 0.518696, Obj: 0.510300, No Obj: 0.528529, .5R: 0.000000, .75R: 0.000000, count: 5
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521170, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514448, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.270750, Class: 0.498121, Obj: 0.530221, No Obj: 0.528569, .5R: 0.000000, .75R: 0.000000, count: 2
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521003, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.513312, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.235287, Class: 0.480098, Obj: 0.517194, No Obj: 0.527906, .5R: 0.000000, .75R: 0.000000, count: 4
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521571, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.513103, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.368155, Class: 0.552764, Obj: 0.482865, No Obj: 0.528044, .5R: 0.200000, .75R: 0.000000, count: 5
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.521782, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.514365, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 82 Avg IOU: 0.393099, Class: 0.568679, Obj: 0.534074, No Obj: 0.528130, .5R: 0.000000, .75R: 0.000000, count: 2
Region 94 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.522459, .5R: -nan(ind), .75R: -nan(ind), count: 0
Region 106 Avg IOU: -nan(ind), Class: -nan(ind), Obj: -nan(ind), No Obj: 0.515186, .5R: -nan(ind), .75R: -nan(ind), count: 0
2: 1002.576904, 1003.042297 avg loss, 0.000000 rate, 1043.121191 seconds, 128 images
Loaded: 0.000000 seconds
最佳答案
默认情况下,每 100 次迭代记录一次权重。在对权重进行推断之前,您必须等待很长时间(尤其是没有 GPU 的情况下)训练 YOLO。
关于python - 暗网 : No weights created after training custom objects,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51722084/
我希望深入了解 LightFM 实现的以下权重: 样本权重 什么是sample_weights在 fit方法?我读到它们是为了模拟时间衰减,但这究竟是如何工作的?解释这一点的示例或文章将非常有帮助。
如果这是一个愚蠢的问题,我预先道歉。 当调用 nw:weighted-path-to 时,会返回一个链接列表,描述起始海龟和目标海龟之间的最短路径。 类似地,调用 nw:turtles-on-weig
我阅读了以下代码: //talkback.c -- nosy, informative program #include #include //for strlen() prototype #d
我有这个示例 html 文件: Test font bold (weight = 700) Test font bold (weight = 900) 我不知道为什么如果我将
您好,我正在为我自己的数据集训练 VGG16 网络。下面给出了我使用的代码。 from keras.models import Sequential from scipy.misc import im
我刚看完the notes CNN 上的斯坦福 CS231n 和现场链接 demo ;然而,我不确定演示中的“激活”、“激活梯度”、“权重”和“权重梯度”指的是什么。 以下屏幕截图已从演示中复制。 混
我不明白 maxout 是如何工作的,我怀疑这是由于我对线性代数乘法的可视化造成的。基本上,我的印象是 maxout 函数有两组权重,均经过单独训练,然后只选择一组。但我怀疑这可能是错误的,因为我没有
我运行了 Tensorflow 1.0 提供的 ptb_word_lm.py,但它显示了这条消息: ValueError: Attempt to have a second RNNCell use t
我有一个关于 R 中的样本函数的简单问题。我从长度为 5 的输入向量中随机抽样 0 和 1 并将它们相加,该向量指定要运行的试验次数并设置种子以生成可重复的随机数字。种子按预期工作,但根据我在 pro
我有一个以“h5”格式保存的模型。在使用 编译模型后,我正在尝试恢复训练并尝试加载优化器的权重 model.optimizer.set_weights(weights_list) 哪里weights_
我正在尝试为我的大学项目开发电话分类器模型。我已经训练了我的模型,当我尝试通过执行 python app/server.pyserve 来部署模型时遇到了问题。我读了一篇文章( https://f
所以... var testArray=new Array("hello"); testArray.length=100; console.log(testArray.length); 我相信上面的内
在 css 规范中,什么会影响更多的 inline 样式或外部 !important 外部“style.css”: #di{color: green!important;} div 文本颜色是红色还
我正在使用 http://hughsk.github.io/colony/ 的调整后的代码,但我不断收到错误: Uncaught TypeError: Cannot read property 'we
我们有一个系统,它按表中的“优先级”编号处理记录。我们通过表的内容定义优先级,例如 UPDATE table SET priority=3 WHERE processed IS NULL UPDATE
我已经使用 Darkflow 和 yolov2.weights 进行了定制训练。 checkpoint 文件夹中有四个文件。它们是: 1.yolov2-3c-5500.data-00000-of-00
我需要将 weighted.mean 函数包含在另一个函数中,作为我正在处理的项目的一部分。我无法让 w 参数在我正在处理的函数中正常工作。 为了使我的整体功能正常工作,我需要满足使权重参数必须是可选
我想使用 ggplot 绘制加权 CDF。一些旧的非 SO 讨论(例如 2012 年的 this)表明这是不可能的,但我想我会重新加注。 例如,考虑以下数据: df <- data.frame(x=s
这个问题已经有答案了: 已关闭11 年前。 Possible Duplicate: In Java, what is the best way to determine the size of an
我需要将 weighted.mean 函数包含在另一个函数中,作为我正在处理的项目的一部分。我无法让 w 参数在我正在处理的函数中正常工作。 为了使我的整体功能正常工作,我需要满足使权重参数必须是可选
我是一名优秀的程序员,十分优秀!