- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
在 PyMC3 中,单个新观察通过 set_data()
sample_posterior_predictive()
当前未正确处理,在这种情况下,它会预测训练数据(参见 #3640)。因此,我决定在我的输入数据中添加与第一个相同的第二个人工行,以绕过此行为。
现在,我偶然发现了一些我目前无法理解的东西:第一行和第二行的预测不同。用常数 random_seed
,我原以为这两个预测是相同的。任何人都可以请 (i) 确认这是预期的行为而不是错误,如果是这样,(ii) 解释为什么 sample_posterior_predictive()
为一个和相同的输入数据创建不同的结果?
这是一个基于 iris 数据集的可重现示例,其中花瓣宽度和长度分别用作预测器和响应,除最后一行之外的所有内容都用于训练。该模型随后针对最后一行进行测试。 pd.concat()
用于复制测试数据帧的第一行,以规避上述bug。
import seaborn as sns
import pymc3 as pm
import pandas as pd
import numpy as np
### . training ----
dat = sns.load_dataset('iris')
trn = dat.iloc[:-1]
with pm.Model() as model:
s_data = pm.Data('s_data', trn['petal_width'])
outcome = pm.glm.GLM(x = s_data, y = trn['petal_length'], labels = 'petal_width')
trace = pm.sample(500, cores = 1, random_seed = 1899)
### . testing ----
tst = dat.iloc[-1:]
tst = pd.concat([tst, tst], axis = 0, ignore_index = True)
with model:
pm.set_data({'s_data': tst['petal_width']})
ppc = pm.sample_posterior_predictive(trace, random_seed = 1900)
np.mean(ppc['y'], axis = 0)
# array([5.09585088, 5.08377112]) # mean predicted value for [first, second] row
最佳答案
我不认为这是一个错误,我也不觉得它令人不安。由于 PyMC3 不检查被预测的点是否相同,它单独处理它们,并且每个点都会从模型中随机抽取。虽然每次 PPC 绘制(ppc['y']
中的行)都使用相同的随机参数设置用于从跟踪中获取的 GLM,但该模型仍然是随机的(即,始终存在测量误差)。我认为这解释了差异。
如果增加 PPC 中的抽奖次数,您会看到均值的差异减小,这与这只是抽样差异一致。
关于python - PyMC3:相同输入的不同预测,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59288938/
我尝试移植简单的生存模型 from here (the first one in introduction)从 PyMC 2 到 PyMC 3。但是,我没有找到任何等效于“观察到”的装饰器,并且我尝试
我使用了基于 Clojure 的“圣公会”,我认为这对我不利。糟糕的文档和太小的社区无法寻求帮助。此外,我仍然无法熟悉基于 Scheme 的语言。所以我想将语言更改为基于 Python 的语言。 也许
我想对我在不使用 pymc 的情况下生成的示例使用 pymc 诊断和摘要功能。例如,我想在我自己的一组示例中使用 pymc 的 mc_error 例程。 一些 pymc 诊断函数可以采用 np.arr
我正在尝试在PyMC3中采样多个链。在PyMC2中,我将执行以下操作: for i in range(N): model.sample(iter=iter, burn=burn, thin =
有关如何使用PyMC将两个正态分布拟合到数据的信息,请参见a question on CrossValidated。 Cam.Davidson.Pilon的答案是使用伯努利分布将数据分配给两个法线之一
我正在尝试使用最大后验估计来估计泊松过程的速率,其中速率随时间变化。这是一个速率线性变化的简化示例 (λ = ax+b): import numpy as np import pymc # Obser
我正在用一个简单的多级模型尝试 PyMC3。当同时使用假数据和真实数据时,随机效应分布的轨迹会相互移动(见下图),并且似乎是同一轨迹的偏移量。这是 NUTS 的预期产物还是表明我的模型存在问题? 这是
我试图在通过 PyMC 的 MCMC 方法拟合变量时设置约束 例如,我在 PyMC 中定义了以下随机模型 import pymc as pm a=pm.Uniform('a',lower=0.,upp
尝试通过 conda 安装 pymc 时,我收到以下信息: C:\Anaconda>conda install -c https://conda.binstar.org/pymc pymc 正在获取包
如何在 PyMC3 中定义自定义似然?在 PyMC2 中,我可以使用 @pymc.potential .我尝试使用 pymc.Potential然而,在 PyMC3 中,似乎 bool 运算不能应用于
我正在尝试从随机 Petri 网模型中估计速率。我不明白为什么,但我得到了零概率错误,即使在给定我为速率定义的初始值的情况下,将数据数据与预期的观察次数完全对应。 例如,以下比率 [0.01, 2,
我正在尝试从 Infer.NET 移植一个模型,但我正在努力如何制作在 pymc3 中观察到的确定性变量? M,L ~ 伯努利 # doesn't work ... Deterministic("U
我已经开始试用 pymc3 并且需要实现多项逻辑回归模型。我研究了 twiecki 的教程,并且了解他对层次回归模型的实现(请参阅 https://twiecki.github.io/blog/201
我正在尝试使用 PyMC 实现一个非常简单的大数定律示例。目标是生成不同大小样本的许多样本平均值。例如,在下面的代码中,我重复采集 5 个样本组 (samples_to_average = 5),计算
这是 PyMC: Parameter estimation in a Markov system 的后续内容 我有一个由每个时间步的位置和速度定义的系统。系统的行为定义为: vel = vel + d
型号 我有以下统计模型: r_i ~ N(r | mu_i, sigma) mu_i = w . Q_i w ~ N(w | phi, Sigma) prior(phi, Sigma) = Norma
我正在尝试将负二项式混合物与 PyMC 拟合。看来我做错了什么,因为预测看起来与输入数据并不相似。问题可能出在负二项式参数的先验上。有什么建议吗? from sklearn.cluster i
我有三个关于装饰器的问题,我无法找到答案: Q1)PyMC 中装饰器的参数(@Deterministic,@Stochastic)表示什么? Q2) @pymc.stochastic(dtype=in
我正在使用an example of linear regression from bayesian methods for hackers但无法将其扩展到我的用途。 我对一个随机变量进行了观察,对该
我正在尝试拟合共享相同截距的多条线。 import numpy as np import pymc # Observations a_actual = np.array([[2., 5., 7.]])
我是一名优秀的程序员,十分优秀!