- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我遇到了一个错误
AttributeError: 'RandomForestClassifier' object has no attribute 'fit_transform'
但是,sklearn.ensemble.RandomForestClassifier 中有一个名为 fit_transform(X,y) 的方法。 This can be seen here我不明白为什么会收到此错误以及如何解决它。这是代码片段-
from sklearn.ensemble import RandomForestClassifier
import pickle
import sys
import numpy as np
X1=np.array(pickle.load(open('X2g_train.p','rb')))
X2=np.array(pickle.load(open('X3g_train.p','rb')))
X3=np.array(pickle.load(open('X4g_train.p','rb')))
X4=np.array(pickle.load(open('Xhead_train.p','rb')))
X=np.hstack((X2,X1,X3,X4))
y = np.array(pickle.load(open('y.p','rb')))
rf=RandomForestClassifier(n_estimators=200)
Xr=rf.fit_transform(X,y)
最佳答案
scikit-learn API documentation 中没有这样的方法
要训练您的模型并获得预测,您需要这样做
rf = RandomForestClassifier()
# train the model
rf.fit(X_train, y_train)
# get predictions
predictions = rf.predict(X_test)
关于python - 属性错误 : 'RandomForestClassifier' object has no attribute 'fit_transform' ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49400413/
由于某种原因,每当我运行 ensemble.RandomForestClassifier() 并使用 .predict_proba() 方法时,它都会返回一个形状为 [n_classes, n_sam
我正在测试这段代码。 df1 = df[['Group', 'Sector', 'Cat2', 'Cat3', 'Cat4', 'Cat5', 'Cat6', 'Industry', 'Market'
我正在使用一个在每次迭代时生成数据的环境。我想保留先前迭代中的模型并将新数据添加到现有模型中。 我想了解模型拟合的工作原理。它将使新数据与现有模型相匹配,还是会使用新数据创建新模型。 调用新数据的拟合
我编写了以下 Python 代码,用于在 UCI ML 存储库的 Forest CoverType 数据集上运行 RandomForestClassifier(使用默认参数设置)。然而,结果很差,准确
from sklearn.ensemble import RandomForestClassifier from sklearn import tree rf = RandomForestClassi
我正在尝试攻击我的随机森林分类器。 clf = RandomForestClassifier(max_features="sqrt", n_estimators=500, n_jobs=-1, ver
在 section 1.9.2.1 中的 scikit-learn 文档中(摘录如下),为什么随机森林的实现与 Breiman 的原始论文不同?据我所知,在聚合分类器的集合时,Breiman 选择了多
我使用以下代码可视化 RandomForestClassifier 的结果: X, y = make_blobs(n_samples=300, centers=4,
我是机器学习新手,我正在尝试使用 scikit RandomForestClassifier 对文本进行分类。我遇到的问题是我的测试数据结果与 sklearn 分类报告不匹配。训练集大约有 25k 个
我一直在使用 sklearn 的随机森林,并且尝试比较几个模型。然后我注意到即使使用相同的种子,随机森林也会给出不同的结果。我尝试了两种方法:random.seed(1234) 以及使用随机森林内置的
这是一个新手问题。 我想使用 sklearn 中的 RandomForestClassifier 训练一个 Random Forest。我有几个变量,但在这些变量中,我希望算法在它训练的每一棵树中确定
在机器学习方面,我是初学者,我无法解释我从第一个程序中获得的一些结果。这是设置: 我有一个书评数据集。这些书可以用大约 1600 本书中的任意数量的限定符来标记。评论这些书的人也可以用这些限定符来标记
我正在尝试用中等大小的 numpy float 组来填充森林 In [3]: data.shape Out[3]: (401125, 5) [...] forest = forest.fit(data
我正在 RandomForestClassifier 上进行网格搜索,我的代码一直在工作,直到我更改了功能,然后代码突然生成以下错误(在 classifier.fit 行) 我没有更改任何代码,只是将
我正在 RandomForestClassifier 上进行网格搜索,我的代码一直在工作,直到我更改了功能,然后代码突然生成以下错误(在 classifier.fit 行) 我没有更改任何代码,只是将
我使用 ml.classification.RandomForestClassifier 构建了随机森林模型。我试图从模型中提取预测概率,但我只看到了预测类而不是概率。根据这个issue link ,
我正在使用 Scikit RandomForestClassifier 对不平衡数据进行分类。目标类数据为“1”或“0”(99% 的值为 0)。 我想分配一个权重。我怎样才能做到这一点。 我在文档中发
如何访问单个树并保存/加载 RandomForestClassifier 对象? 我只想查看每棵树的结构以确定哪个特征是重要的。我想将经过训练的分类器对象保存在文件或数据库中。怎么做? 最佳答案 您基
我正在尝试训练一个决策树模型,保存它,然后在我以后需要时重新加载它。但是,我不断收到以下错误: This DecisionTreeClassifier instance is not fitted y
我一直在运行此 website 上显示的“平均降低精度”度量的实现: 在示例中,作者使用的是随机森林回归器 RandomForestRegressor,但我使用的是随机森林分类器 RandomFore
我是一名优秀的程序员,十分优秀!