gpt4 book ai didi

python-3.x - 如何从 Pandas DataFrame 绘制家谱?

转载 作者:行者123 更新时间:2023-12-03 18:51:30 25 4
gpt4 key购买 nike

我有一张 table ,用于存储有关我祖先的信息。例如,我创建了一张受教父启发的类似表格。

  |--------+---+-------------+-----------+------+------+--------+--------+----------------+----------------|
| ID | S | First name | Last name | DoB | DoD | FID | MID | Place of birth | Job |
|--------+---+-------------+-----------+------+------+--------+--------+----------------+----------------|
| AnAn | M | Antonio | Andolini | | 1901 | | | Corleone | |
| SiAn | F | Signora | Andolini | | 1901 | | | Corleone | housewife |
| PaAn87 | M | Paolo | Andolini | 1887 | 1901 | AnAn | SiAn | | |
| ViCo92 | M | Vito | Corleone | 1892 | 1954 | AnAn | SiAn | Corleone | godfather |
| CaCo97 | F | Carmella | Corleone | 1897 | 1959 | | | | |
| ToHa10 | M | Tom | Hagen | 1910 | 1970 | ViCo92 | CaCo97 | New York | Consigliere |
| SaCo16 | M | Santino | Corleone | 1916 | 1948 | ViCo92 | CaCo97 | New York | gangster |
| SaCo17 | F | Sandra | Colombo | 1917 | | | | Messina | |
| FrCo19 | M | Frederico | Corleone | 1919 | 1959 | ViCo92 | CaCo97 | New York | Casino Manager |
| MiCo20 | M | Michael | Corleone | 1920 | 1997 | ViCo92 | CaCo97 | New York | godfather |
| ThHa20 | F | Theresa | Hagen | 1920 | | | | New Jersey | Art expert |
| LuMa23 | F | Lucy | Mancini | 1923 | | | | | Hotel employee |
| KaAd24 | F | Kay | Adams | 1934 | | | | | |
| FrCo37 | F | Francessa | Corleone | 1937 | | SaCo16 | SaCo17 | | |
| KaCo37 | F | Kathryn | Corleone | 1937 | | SaCo16 | SaCo17 | | |
| FrCo40 | F | Frank | Corleone | 1940 | | SaCo16 | SaCo17 | | |
| SaCo45 | M | Santino Jr. | Corleone | 1945 | | SaCo16 | SaCo17 | | |
| FrHa | M | Frank | Hagen | 1940 | | ToHa10 | Th20 | | |
| AnHa42 | M | Andrew | Hagen | 1942 | | ToHa10 | Th20 | | Priest |
| ViMa | M | Vincent | Mancini | 1948 | | SaCo16 | LuMa23 | New York | Godfather |
| GiHa58 | F | Gianna | Hagen | 1948 | | ToHa10 | Th20 | | |
| AnCo51 | M | Anthony | Corleone | 1951 | | MiCo20 | KaAd24 | New York | Singer |
| MaCo53 | F | Mary | Corleone | 1953 | 1979 | MiCo20 | KaAd24 | New York | Student |
| ChHa54 | F | Christina | Hagen | 1954 | | ToHa10 | Th20 | | |
| CoCo27 | F | Constanzia | Corleone | 1927 | | ViCo92 | CaCo97 | New York | rentier |
| CaRi20 | M | Carlo | Rizzi | 1920 | 1955 | | | Nevada | Bookmaker |
| ViRi49 | M | Victor | Rizzi | 1949 | | CaRi20 | CoCo27 | New York | |
| MiRi | M | Michael | Rizzi | 1955 | | CaRi20 | CoCo27 | | |
|--------+---+-------------+-----------+------+------+--------+--------+----------------+----------------|
这里,个体之间的关系可以理解为有向无环图(DAG)。我的目标是使用图形绘制将此表可视化为家谱。
首先,我将表格转换为边缘列表,其中 ID是起始顶点和 ParentID结束顶点:
import pandas as pd
rawdf = pd.read_csv('corleone.csv')
el1 = rawdf[['ID','MID']]
el2 = rawdf[['ID','FID']]
el1.columns = ['Child', 'ParentID']
el2.columns = el1.columns
el = pd.concat([el1, el2])
el = el.dropna()
df = el.merge(rawdf, left_index=True, right_index=True, how='left')
df['name'] = df[df.columns[4:6]].apply(lambda x: ' '.join(x.dropna().astype(str)),axis=1)
df = df.drop(['Child','FID', 'MID', 'First name', 'Last name'], axis=1)
df = df[['ID', 'name', 'S', 'DoB', 'DoD', 'Place of birth', 'Job', 'ParentID']]
这给出了以下数据帧:
|--------+----------------------+---+--------+--------+----------------+----------------+----------|
| ID | name | S | DoB | DoD | Place of birth | Job | ParentID |
|--------+----------------------+---+--------+--------+----------------+----------------+----------|
| PaAn87 | Paolo Andolini | M | 1887.0 | 1901.0 | NaN | NaN | SiAn |
| PaAn87 | Paolo Andolini | M | 1887.0 | 1901.0 | NaN | NaN | AnAn |
| ViCo92 | Vito Corleone | M | 1892.0 | 1954.0 | Corleone | godfather | SiAn |
| ViCo92 | Vito Corleone | M | 1892.0 | 1954.0 | Corleone | godfather | AnAn |
| ToHa10 | Tom Hagen | M | 1910.0 | 1970.0 | New York | Consigliere | CaCo97 |
| ToHa10 | Tom Hagen | M | 1910.0 | 1970.0 | New York | Consigliere | ViCo92 |
| SaCo16 | Santino Corleone | M | 1916.0 | 1948.0 | New York | gangster | CaCo97 |
| SaCo16 | Santino Corleone | M | 1916.0 | 1948.0 | New York | gangster | ViCo92 |
| FrCo19 | Frederico Corleone | M | 1919.0 | 1959.0 | New York | Casino Manager | CaCo97 |
| FrCo19 | Frederico Corleone | M | 1919.0 | 1959.0 | New York | Casino Manager | ViCo92 |
| MiCo20 | Michael Corleone | M | 1920.0 | 1997.0 | New York | godfather | CaCo97 |
| MiCo20 | Michael Corleone | M | 1920.0 | 1997.0 | New York | godfather | ViCo92 |
| FrCo37 | Francessa Corleone | F | 1937.0 | NaN | NaN | NaN | SaCo17 |
| FrCo37 | Francessa Corleone | F | 1937.0 | NaN | NaN | NaN | SaCo16 |
| KaCo37 | Kathryn Corleone | F | 1937.0 | NaN | NaN | NaN | SaCo17 |
| KaCo37 | Kathryn Corleone | F | 1937.0 | NaN | NaN | NaN | SaCo16 |
| FrCo40 | Frank Corleone | F | 1940.0 | NaN | NaN | NaN | SaCo17 |
| FrCo40 | Frank Corleone | F | 1940.0 | NaN | NaN | NaN | SaCo16 |
| SaCo45 | Santino Jr. Corleone | M | 1945.0 | NaN | NaN | NaN | SaCo17 |
| SaCo45 | Santino Jr. Corleone | M | 1945.0 | NaN | NaN | NaN | SaCo16 |
| FrHa | Frank Hagen | M | 1940.0 | NaN | NaN | NaN | Th20 |
| FrHa | Frank Hagen | M | 1940.0 | NaN | NaN | NaN | ToHa10 |
| AnHa42 | Andrew Hagen | M | 1942.0 | NaN | NaN | Priest | Th20 |
| AnHa42 | Andrew Hagen | M | 1942.0 | NaN | NaN | Priest | ToHa10 |
| ViMa | Vincent Mancini | M | 1948.0 | NaN | New York | Godfather | LuMa23 |
| ViMa | Vincent Mancini | M | 1948.0 | NaN | New York | Godfather | SaCo16 |
| GiHa58 | Gianna Hagen | F | 1948.0 | NaN | NaN | NaN | Th20 |
| GiHa58 | Gianna Hagen | F | 1948.0 | NaN | NaN | NaN | ToHa10 |
| AnCo51 | Anthony Corleone | M | 1951.0 | NaN | New York | Singer | KaAd24 |
| AnCo51 | Anthony Corleone | M | 1951.0 | NaN | New York | Singer | MiCo20 |
| MaCo53 | Mary Corleone | F | 1953.0 | 1979.0 | New York | Student | KaAd24 |
| MaCo53 | Mary Corleone | F | 1953.0 | 1979.0 | New York | Student | MiCo20 |
| ChHa54 | Christina Hagen | F | 1954.0 | NaN | NaN | NaN | Th20 |
| ChHa54 | Christina Hagen | F | 1954.0 | NaN | NaN | NaN | ToHa10 |
| CoCo27 | Constanzia Corleone | F | 1927.0 | NaN | New York | rentier | CaCo97 |
| CoCo27 | Constanzia Corleone | F | 1927.0 | NaN | New York | rentier | ViCo92 |
| ViRi49 | Victor Rizzi | M | 1949.0 | NaN | New York | NaN | CoCo27 |
| ViRi49 | Victor Rizzi | M | 1949.0 | NaN | New York | NaN | CaRi20 |
| MiRi | Michael Rizzi | M | 1955.0 | NaN | NaN | NaN | CoCo27 |
| MiRi | Michael Rizzi | M | 1955.0 | NaN | NaN | NaN | CaRi20 |
|--------+----------------------+---+--------+--------+----------------+----------------+----------|
然后,我使用 graphviz 生成一个 DAG:
from graphviz import Digraph
f = Digraph('neato', format='pdf', encoding='utf8', filename='corleone', node_attr={'color': 'lightblue2', 'style': 'filled'})
f.attr('node', shape='box')
for index, row in df.iterrows():
f.edge(str(row["ParentID"]), str(row["ID"]), label='')
f.view()
看起来像这样:
Which looks like this
我面临的问题是我想修改很多方面,例如:
  • 男性用一种颜色,女性用另一种颜色
  • 使用名称而不是 ID
  • 箭头看起来像家谱箭头
  • 能够在每个框中添加附加信息,例如 DoB、DoD 等。

  • 我不知道是否可以使用 graphviz 来做到这一点(在文档中找不到方法),如果不是,我会对如何实现它的想法感兴趣。

    最佳答案

    我改进了绘图,但它仍然没有达到我的期望。所以这里是带有一些修改注释的代码。

  • 空白单元格空白而不是 NaN :
  • keep_default_na=False

  • 替换 ParentID 中的每个空格通过特定字符串:
  • el.replace('', np.nan, regex=True, inplace = True)
  • t = pd.DataFrame({'tmp':['no_entry'+str(i) for i in range(el.shape[0])]})
  • el['ParentID'].fillna(t['tmp'], inplace=True)

  • import pandas as pd
    import numpy as np
    rawdf = pd.read_csv('corleone.csv', keep_default_na=False)
    el1 = rawdf[['ID','MID']]
    el2 = rawdf[['ID','FID']]
    el1.columns = ['Child', 'ParentID']
    el2.columns = el1.columns
    el = pd.concat([el1, el2])
    el.replace('', np.nan, regex=True, inplace = True)
    t = pd.DataFrame({'tmp':['no_entry'+str(i) for i in range(el.shape[0])]})
    el['ParentID'].fillna(t['tmp'], inplace=True)
    df = el.merge(rawdf, left_index=True, right_index=True, how='left')
    df['name'] = df[df.columns[4:6]].apply(lambda x: ' '.join(x.dropna().astype(str)),axis=1)
    df = df.drop(['Child','FID', 'MID', 'First name', 'Last name'], axis=1)
    df = df[['ID', 'name', 'S', 'DoB', 'DoD', 'Place of birth', 'Job', 'ParentID']]
  • 将具有相同起始和结束节点并具有方形边的边分组
  • graph_attr={"concentrate": "true", "splines":"ortho"})

  • 有节点显示 name , job , DoB , Place of birth , DoD
  • label= ...

  • 根据性别定义节点颜色
  • _attributes={'color':'lightpink' if row['S']=='F' else 'lightblue'if row['S']=='M' else 'lightgray'}

  • from graphviz import Digraph
    f = Digraph('neato', format='jpg', encoding='utf8', filename='corleone', node_attr={'style': 'filled'}, graph_attr={"concentrate": "true", "splines":"ortho"})
    f.attr('node', shape='box')
    for index, row in df.iterrows():
    f.node(row['ID'],
    label=
    row['name']
    + '\n' +
    row['Job']
    + '\n'+
    row['DoB']
    + '\n' +
    row['Place of birth']
    + '\n†' +
    row['DoD'],
    _attributes={'color':'lightpink' if row['S']=='F' else 'lightblue'if row['S']=='M' else 'lightgray'})
    for index, row in df.iterrows():
    f.edge(str(row["ParentID"]), str(row["ID"]), label='')
    f.view()
    结果如下: Famiglia Corleone
    哪个好得多。尽管如此,仍然存在两个主要缺陷:
  • 当 parent 和 child 看起来像这样时, parent 和 child 之间的边缘都被分割了enter image description here
  • 我无法删除不必要的换行符和死亡符号
  • 关于python-3.x - 如何从 Pandas DataFrame 绘制家谱?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66823677/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com