gpt4 book ai didi

r - 如何绘制一个因子水平作为 geom_col/geom_area 的基础

转载 作者:行者123 更新时间:2023-12-03 18:50:35 25 4
gpt4 key购买 nike

我编写了以下函数来制作自定义堆叠图:

stacked_plot <- function(data, what, by = NULL, date_col = date, date_unit = NULL, type = 'area'){

by <- enquo(by)
what <- ensym(what)
date_col <- ensym(date_col)
date_unit <- enquo(date_unit)

if (!rlang::as_string(date_col) %in% names(data)){
return(cat('Nie odnaleziono kolumny "', as_string(date_col), '".', sep = ''))
}

if (!rlang::quo_is_null(date_unit)){
data <- data %>%
mutate(!!date_col := floor_date(!!date_col, unit = !!date_unit, week_start = 1))
}

if (!rlang::quo_is_null(by)) {
data <- data %>%
filter(!is.na(!!by)) %>%
group_by(!!date_col, !!by) %>%
summarise(!!what := sum(!!what, na.rm = TRUE)) %>%
ungroup() %>%
complete(!!date_col, !!by, fill = rlang::list2(!!what := 0))
} else {
data <- data %>%
group_by(!!date_col) %>%
summarise(!!what := sum(!!what, na.rm = TRUE)) %>%
complete(!!date_col, fill = rlang::list2(!!what := 0))
}

if (type == 'area'){
p <- data %>%
ggplot(aes(!!date_col, !!what, fill = !!by)) +
geom_area(position = 'stack')
} else if (type == 'col'){
p <- data %>%
ggplot(aes(!!date_col, !!what, fill = !!by)) +
geom_col(position = 'stack')
}

p <- p +
scale_x_date(breaks = '1 month', date_labels = '%Y-%m', expand = c(.01, .01)) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, vjust = .4)) +
labs(fill = '')

return(p)
}
现在,我想将它与如下数据一起使用:
data <- structure(list(category1 = structure(c(7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 2L, 1L, 8L, 1L, 1L,
1L, 1L, 6L, 6L, 5L, 5L, 1L, 1L, 8L, 3L, 1L, 1L, 8L, 1L, 1L, 1L,
1L, 1L, 1L, 4L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 2L, 1L, 8L, 1L, 1L, 1L, 1L, 6L, 6L, 5L,
5L, 1L, 1L, 8L, 3L, 1L, 1L, 8L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 2L, 1L, 8L, 1L, 1L, 1L, 1L, 6L, 6L, 5L, 5L, 1L, 1L, 8L, 3L,
1L, 1L, 8L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 2L, 1L, 8L, 1L,
1L, 1L, 1L, 6L, 6L, 5L, 5L, 1L, 1L, 8L, 3L, 1L, 1L, 8L, 1L, 1L,
1L, 1L, 1L, 1L, 4L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 2L, 1L, 8L, 1L, 1L, 1L, 1L, 6L, 6L,
5L, 5L, 1L), .Label = c("base", "cat1", "cat2", "cat3", "cat4",
"cat5", "cat6", "cat7"), class = "factor"), date = structure(c(14403,
14403, 14403, 14403, 14403, 14403, 14403, 14403, 14403, 14403,
14403, 14403, 14403, 14403, 14403, 14403, 14403, 14403, 14403,
14403, 14403, 14403, 14403, 14403, 14403, 14403, 14403, 14403,
14403, 14403, 14403, 14403, 14403, 14410, 14410, 14410, 14410,
14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410,
14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410,
14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410,
14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410, 14410,
14410, 14410, 14410, 14417, 14417, 14417, 14417, 14417, 14417,
14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417,
14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417,
14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417,
14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417, 14417,
14417, 14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424,
14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424,
14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424,
14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424,
14424, 14424, 14424, 14424, 14424, 14424, 14424, 14424, 14431,
14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431,
14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431,
14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431,
14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431, 14431,
14431, 14431), class = "Date"), value = c(0.0296166578938365,
7.02892806393191e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, -23.1966033032737, 0, -17195.0853457778, 0, 0, 0, 0, 0,
7861.28404641463, 12189.6349251651, 0, 0, -3741.93702617252,
0, 176.303827249194, 391.710849761278, 131970.980379196, -1587.22123177257,
297.978554303167, -51860.1739251141, 0, 0, 0, 0, -391.332709445819,
0.000172964963558834, 0.0098722192979455, 2.34186560613466e-05,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -7.73219962306076,
0, -17218.0930016352, 0, 0, 0, 0, 0, 7781.23968988082, 12189.6349251651,
0, 0, 0, 0, 449.478850296707, 293.783137320959, 131970.980379196,
-1404.7589064091, 250.836431075847, -56540.9156671359, 0, 0,
0, 0, -558.95740304599, 5.77335368827169e-05, 0.00329073976598183,
7.79511453535577e-06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, -2.57739987435359, 0, -17241.1006574926, 0, 0, 0, 0, 0,
6598.97373566299, 12189.6349251651, 0, -3324.25546024928, 0,
0, 549.603379062553, 195.855424880639, 131970.980379196, -529.148187957385,
219.828510450391, -64437.2982346174, 0, 0, 0, 0, -1447.22409849783,
1.92288024882845e-05, 0.00109691325532728, 2.60503400284112e-06,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.859131813420729,
0, -17264.10831335, 0, 0, 0, 0, 0, 5437.37054226604, 0, 0, 0,
0, 0, 293.381058210822, 293.783137320959, 131970.980379196, 526.728756878514,
207.979955414647, -65107.9475533677, 0, 0, 0, 0, -336.514645781955,
6.40960082942816e-06, 0.000366094798965479, 8.69455082789682e-07,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -127.057071107617,
0, -17287.1159692073, 0, 0, 0, 0, 0, 5343.46624155083, 0, 0,
0)), class = "data.frame", row.names = c(NA, -201L))
所以我做了以下情节:
data %>% stacked_plot(value, category1, date, type = 'col')
enter image description here
这是我的问题。我无法弄清楚我的因子变量 ( category1 ) 的堆叠顺序。我想要做的是重新排序我的函数中的因子水平,以便 base类别将始终显示为从 0 开始,其余级别将堆叠在其之上或之下。好吧,它并不总是必须命名为 base ,但我认为我们可以为我们的函数添加一个参数并为其提供名称 base多变的。当然,输入 data文件可以有不同数量的类别。

最佳答案

看看@Inhabitant 在这个问题中的回答:
How to control ordering of stacked bar chart using identity on ggplot2

基本上类别是根据因子中的级别顺序堆叠的,并且堆叠顺序从上到下开始。

以下是我如何使用您的数据重新排序堆叠:

df_0 <- df_0 %>%
filter(!is.na(category1)) %>%
group_by(date, category1) %>%
summarise(value := sum(value, na.rm = TRUE)) %>%
ungroup() %>%
complete(date, category1, fill = rlang::list2(value := 0))

df_0$category1 <- df_0$category1 %>%
factor(levels = c("cat1", "cat2", "cat3", "cat4", "cat5", "cat6", "cat7", "base"))

df_0 %>%
ggplot(aes(date, value, fill = category1)) +
geom_col(position = 'stack')

两点说明:
  • 我将数据的名称从 data 更改为至 df_0避免与 R 函数混淆 data()
  • 为了让自己更轻松,我在没有该功能的情况下立即处理了数据,但当然所有这些都可以与该功能集成

  • ordered stacking

    关于r - 如何绘制一个因子水平作为 geom_col/geom_area 的基础,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53342279/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com