gpt4 book ai didi

r - R 包预测中 auto.arima 的奇怪行为

转载 作者:行者123 更新时间:2023-12-03 18:50:24 31 4
gpt4 key购买 nike

我正在尝试使用 R 包预测来拟合 arima 模型(使用 Arima 功能)并自动选择合适的模型(使用 auto.arima 功能)。我首先用 Arima 函数估计了两种可能的模型:

tt.1 <- Arima(x, order=c(1,0,1), seasonal=list(order=c(0,1,1)), 
include.drift=F)
tt.2 <- Arima(x, order=c(1,0,1), seasonal=list(order=c(0,1,0)),
include.drift=F)

然后,我使用 auto.arima 函数为相同的数据自动选择合适的模型。我固定 d=0 和 D=1 就像在上面的两个模型中一样。此外,我将所有其他参数的最大值设置为 1,没有使用选择标准的近似值,也没有使用逐步选择(请注意,我在这里使用的设置仅用于演示奇怪的行为,而不是我真正想要的用)。我使用 BIC 作为选择模型的标准。这是函数调用:
tt.auto <- auto.arima(x, ic="bic", approximation=F, seasonal=T, stepwise=F, 
max.p=1, max.q=1, max.P=1, max.Q=1, d=0, D=1, start.p=1,
start.q=1, start.P=1, start.Q=1, trace=T,
allowdrift=F)

现在,我本来希望 auto.arima 从上面的两个模型中选择 BIC 较低的模型,或者是 Arima 没有在上面估计的模型。此外,我希望 auto.arima 在 trace=T 时生成的输出与 Arima 为上述两个模型计算的 BIC 完全相同。对于第二个模型确实如此,但对于第一个模型则不然。对于第一个模型,Arima 计算的 BIC 为 10405.81,但模型 (1,0,1)(0,1,1) 的 auto.arima 屏幕输出为 Inf。因此,auto.arima 选择了第二个模型,尽管在比较 Arima 估计的两个模型时,第一个模型的 BIC 较低。有没有人知道为什么在第一个模型的情况下,Arima 计算的 BIC 与 auto.arima 计算的 BIC 不对应?

这是 auto.arima 的屏幕输出:
 ARIMA(0,0,0)(0,1,0)[96]                    : 11744.63
ARIMA(0,0,0)(0,1,1)[96] : Inf
ARIMA(0,0,0)(1,1,0)[96] : Inf
ARIMA(0,0,0)(1,1,1)[96] : Inf
ARIMA(0,0,1)(0,1,0)[96] : 11404.67
ARIMA(0,0,1)(0,1,1)[96] : Inf
ARIMA(0,0,1)(1,1,0)[96] : Inf
ARIMA(0,0,1)(1,1,1)[96] : Inf
ARIMA(1,0,0)(0,1,0)[96] : 11120.72
ARIMA(1,0,0)(0,1,1)[96] : Inf
ARIMA(1,0,0)(1,1,0)[96] : Inf
ARIMA(1,0,0)(1,1,1)[96] : Inf
ARIMA(1,0,1)(0,1,0)[96] : 10984.75
ARIMA(1,0,1)(0,1,1)[96] : Inf
ARIMA(1,0,1)(1,1,0)[96] : Inf
ARIMA(1,0,1)(1,1,1)[96] : Inf

以下是 Arima 计算的模型摘要:
> summary(tt.1)
Series: x
ARIMA(1,0,1)(0,1,1)[96]

Coefficients:
ar1 ma1 sma1
0.9273 -0.5620 -1.0000
s.e. 0.0146 0.0309 0.0349

sigma^2 estimated as 867.7: log likelihood=-5188.98
AIC=10385.96 AICc=10386 BIC=10405.81

Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.205128 28.16286 11.14871 -7.171098 18.42883 0.3612059 -0.03466711
> summary(tt.2)
Series: x
ARIMA(1,0,1)(0,1,0)[96]

Coefficients:
ar1 ma1
0.9148 -0.4967
s.e. 0.0155 0.0320

sigma^2 estimated as 1892: log likelihood=-5481.93
AIC=10969.86 AICc=10969.89 BIC=10984.75

Training set error measures:
ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.1942746 41.61086 15.38138 -8.836059 24.55919 0.49834 -0.02253845

注意:我不允许提供数据。但如果需要,我很乐意提供更多输出或运行修改后的函数调用。

编辑:我现在查看了 auto.arima 的源代码,发现该行为是由对根的检查引起的,如果模型未通过检查,则将用于选择模型的信息标准设置为 Inf。 auto.arima 帮助中引用的论文证实了 (Hyndman, RJ 和 Khandakar, Y. (2008) “自动时间序列预测:R 的预测包”,统计软件杂志,26(3),第 11 页) .很抱歉这个问题,我应该在在这里提问之前先阅读论文!

最佳答案

auto.arima试图找到受某些约束的最佳模型,避免参数接近非平稳和不可逆边界的模型。

您的 tt.1模型的季节性 MA(1) 参数为 -1,位于不可逆边界上。所以你不想使用那个模型,因为它会导致数值不稳定。季节性差异算子与季节性 MA 算子混淆。

内部,auto.arima给出 Inf 的 AIC/AICc/BIC 值任何不满足约束的模型,以避免被选中。

关于r - R 包预测中 auto.arima 的奇怪行为,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37529876/

31 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com