gpt4 book ai didi

python - 删除*几乎*重复的观察 - Python

转载 作者:行者123 更新时间:2023-12-03 18:34:04 25 4
gpt4 key购买 nike

我试图删除 Pandas DataFrame 中的一些观察结果,其中相似度几乎为 100%,但不完全相同。见下图:
enter image description here
请注意“John”、“Mary”和“Wesley”的观察结果几乎相同,但有一列不同。真实数据集有 15 列,以及 215,000 多个观测值。在我可以目视验证的所有情况下,相似之处同样是:在 15 列中,其他观察结果每次最多匹配 14 列。出于该项目的目的,我决定删除重复的观察结果(并将它们存储到另一个 DataFrame 中,以防我的老板要求查看它们)。
我显然想到了remove_duplicates(keep='something') ,但这行不通,因为观察结果并不完全相似。有没有人遇到过这样的问题?关于补救措施的任何想法?

最佳答案

这可以表述为所有记录之间的成对汉明距离计算,分离出低于某个阈值的后续对。幸运的是,numpy/scipy/sklearn 已经完成了繁重的工作。我已经包含了两个产生相同输出的函数 - 一个完全矢量化(但消耗 O(N^2) 内存)和另一个消耗 O(N) 内存但仅沿单个维度矢量化。以您的规模,您几乎肯定不想要完全矢量化的版本 - 它可能会出现 OOM 错误。在这两种情况下,基本算法如下:

  • 将每个特征值编码为整数值(感谢 sklearn!)
  • 对于所有行对,计算汉明距离(不同值的总和)
  • 如果在 threshold 处找到两行或低于汉明距离,丢弃后者,直到没有行低于该阈值

  • 代码:
    from sklearn.preprocessing import OrdinalEncoder
    import pandas as pd
    from scipy.spatial.distance import pdist, squareform
    import numpy as np


    def dedupe_fully_vectorized(df, threshold=1):
    """
    fully vectorized memory hog version - best not to use for n > 10k
    """
    # convert field data to integers
    enc = OrdinalEncoder()
    X = enc.fit_transform(df.to_numpy())

    # calc the (unnormalized) hamming distance for all row pairs
    d = pdist(X, metric="hamming") * df.shape[1]
    s = squareform(d)

    # s contains all pairs (j,k) and (k,j); exclude all pairs j < k as "duplicates"
    s[np.triu_indices_from(s)] = -1
    dupe_pair_matrix = (0 <= s) * (s <= threshold)

    df_dupes = df[np.any(dupe_pair_matrix, axis=1)]
    df_deduped = df.drop(df_dupes.index).sort_index()
    return (df_deduped, df_dupes)


    def dedupe_partially_vectorized(df, threshold=1):
    """
    - Iterate through each row starting from the last; examine all previous rows for duplicates.
    - If found, it is appended to a list of duplicate indices.
    """
    # convert field data to integers
    enc = OrdinalEncoder()
    X = enc.fit_transform(df.to_numpy())

    """
    - loop through each row, starting from last
    - for each `row`, calculate hamming distance to all previous rows
    - if any such distance is `threshold` or less, mark `idx` as duplicate
    - loop ends at 2nd row (1st is by definition not a duplicate)
    """
    dupe_idx = []
    for j in range(len(X) - 1):
    idx = len(X) - j - 1
    row = X[idx]
    prev_rows = X[0:idx]
    dists = np.sum(row != prev_rows, axis=1)
    if min(dists) <= threshold:
    dupe_idx.append(idx)
    dupe_idx = sorted(dupe_idx)
    df_dupes = df.iloc[dupe_idx]
    df_deduped = df.drop(dupe_idx)
    return (df_deduped, df_dupes)
    现在让我们测试一下。首先进行健全性检查:
    df = pd.DataFrame(
    [
    ["john", "doe", "m", 23],
    ["john", "dupe", "m", 23],
    ["jane", "doe", "f", 29],
    ["jane", "dole", "f", 28],
    ["jon", "dupe", "m", 23],
    ["tom", "donald", "m", 12],
    ["john", "dupe", "m", 65],
    ],
    columns=["first", "last", "s", "age"],
    )


    (df_deduped_fv, df_dupes_fv) = dedupe_fully_vectorized(df)
    (df_deduped, df_dupes) = dedupe_partially_vectorized(df)

    df_deduped_fv == df_deduped # True

    # df_deduped
    # first last s age
    # 0 john doe m 23
    # 2 jane doe f 29
    # 3 jane dole f 28
    # 5 tom donald m 12

    # df_dupes
    # first last s age
    # 1 john dupe m 23
    # 4 jon dupe m 23
    # 6 john dupe m 65
    我已经在高达 ~40k 行(如下)的数据帧上测试了这个,它似乎有效(这两种方法给出了相同的结果),但可能需要几秒钟。我还没有按照你的规模尝试过,但它可能很慢:
    arr = np.array("abcdefgh")
    df = pd.DataFrame(np.random.choice(arr, (40000, 15))
    # (df_deduped, df_dupes) = dedupe_partially_vectorized(df)
    如果您可以避免进行所有成对比较(例如按名称分组),则会显着提高性能。
    除了有趣/方法问题
    您可能会注意到,您可以得到有趣的“汉明链”(我不知道这是不是一个术语),其中非常不同的记录由一系列单一编辑的差异记录连接:
    df_bad_news = pd.DataFrame(
    [
    ["john", "doe", "m", 88],
    ["jon", "doe", "m", 88],
    ["jan", "doe", "m", 88],
    ["jane", "doe", "m", 88],
    ["jane", "doe", "m", 12],
    ],
    columns=["first", "last", "s", "age"],
    )


    (df_deduped, df_dupes) = dedupe(df)

    # df_deduped
    # first last s age
    # 0 john doe m 88

    # df_dupes
    # first last s age
    # 1 jon doe m 88
    # 2 jan doe m 88
    # 3 jane doe m 88
    # 4 jane doe m 12
    如果有一个可以分组的字段,性能将大大提高(评论中提到 name 预计是相同的)。这里成对计算在内存中是 n^2。可以根据需要用一些时间效率来换取内存效率。

    关于python - 删除*几乎*重复的观察 - Python,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66160583/

    25 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com