gpt4 book ai didi

r - mgcv_1.8-24 : "fREML" or "REML" method of bam() gives wrong explained deviance

转载 作者:行者123 更新时间:2023-12-03 18:31:00 30 4
gpt4 key购买 nike

bam 安装相同型号使用方法“fREML”和“REML”给了我接近的结果,但解释的偏差与 summary.gam 返回的结果完全不同。 .

“fREML”的数量是~3.5%(不好),而“REML”的数量是~50%(不是那么糟糕)。怎么可能?哪一个是正确的?

不幸的是,我无法提供一个简单的可重现示例。

#######################################
## method = "fREML", discrete = TRUE ##
#######################################

Family: binomial
Link function: logit
Formula:
ObsOrRand ~ s(Var1, k = 3) + s(RandomVar, bs = "re")
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.0026 0.2199 -22.75 <2e-16
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(Var1) 1.00 1.001 17.54 2.82e-05
s(RandomVar) 16.39 19.000 145.03 < 2e-16
R-sq.(adj) = 0.00349 Deviance explained = 3.57%
fREML = 2.8927e+05 Scale est. = 1 n = 312515
########################################
## method = "fREML", discrete = FALSE ##
########################################

Family: binomial
Link function: logit
Formula:
ObsOrRand ~ s(Var1, k = 3) + s(RandomVar, bs = "re")
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.8941 0.2207 -22.18 <2e-16
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(Var1) 1.008 1.016 17.44 3.09e-05
s(RandomVar) 16.390 19.000 144.86 < 2e-16
R-sq.(adj) = 0.00349 Deviance explained = 3.57%
fREML = 3.1556e+05 Scale est. = 1 n = 312515
#####################################################
## method = "REML", discrete method not applicable ##
#####################################################

Family: binomial
Link function: logit
Formula:
ObsOrRand ~ s(Var1, k = 3) + s(RandomVar, bs = "re")
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.8928 0.2205 -22.19 <2e-16
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(Var1) 1.156 1.278 16.57 8.53e-05
s(RandomVar) 16.379 19.000 142.60 < 2e-16
R-sq.(adj) = 0.0035 Deviance explained = 50.8%
-REML = 3.1555e+05 Scale est. = 1 n = 312515

最佳答案

此问题可回溯至 mgcv_1.8-23 .它的阅读日志:

* bam extended family extension had introduced a bug in null deviance 
computation for Gaussian additive case when using methods other than fREML
or GCV.Cp. Fixed.

现在证明补丁对高斯情况是成功的,但对非高斯情况则不然。

让我首先提供一个可重复的示例,因为您的问题没有。
set.seed(0)
x <- runif(1000)
## the linear predictor is a 3rd degree polynomial
p <- binomial()$linkinv(0.5 + poly(x, 3) %*% rnorm(3) * 20)
## p is well spread out on (0, 1); check `hist(p)`
y <- rbinom(1000, 1, p)

library(mgcv)
#Loading required package: nlme
#This is mgcv 1.8-24. For overview type 'help("mgcv-package")'.

fREML <- bam(y ~ s(x, bs = 'cr', k = 8), family = binomial(), method = "fREML")
REML <- bam(y ~ s(x, bs = 'cr', k = 8), family = binomial(), method = "REML")
GCV <- bam(y ~ s(x, bs = 'cr', k = 8), family = binomial(), method = "GCV.Cp")

## explained.deviance = (null.deviance - deviance) / null.deviance
## so in this example we get negative explained deviance for "REML" method

unlist(REML[c("null.deviance", "deviance")])
#null.deviance deviance
# 181.7107 1107.5241

unlist(fREML[c("null.deviance", "deviance")])
#null.deviance deviance
# 1357.936 1107.524

unlist(GCV[c("null.deviance", "deviance")])
#null.deviance deviance
# 1357.936 1108.108

空偏差不能小于偏差(TSS不能小于RSS),所以 bam的“REML”方法无法在此处返回正确的 Null 偏差。

我在 mgcv_1.8-24/R/bam.r 的第 1350 行找到了问题:
object$family <- object$fitted.values <- NULL

其实应该是
object$null.deviance <- object$fitted.values <- NULL

对于“GCV.Cp”和“fREML”以外的方法, bam依赖 gam为估算,缩小后的大 n x p模型矩阵到 p x p矩阵( n :数据数量; p :系数数量)。由于这个新模型矩阵没有自然解释, gam 返回的许多数量应该无效(除了估计的平滑参数)。西蒙输入 family 是个错字.

我构建了一个修补版本,结果证明可以修复该错误。我会告诉 Simon 在下一个版本中修复它。

关于r - mgcv_1.8-24 : "fREML" or "REML" method of bam() gives wrong explained deviance,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51523009/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com