gpt4 book ai didi

tensorflow - 预测模式中的下一个数字

转载 作者:行者123 更新时间:2023-12-03 17:34:34 36 4
gpt4 key购买 nike

我正在尝试使用 TensorFlow 编写一个简单的程序来预测序列中的下一个数字。

我在 TensorFlow 方面没有经验,所以我没有从头开始,而是从本指南开始:http://monik.in/a-noobs-guide-to-implementing-rnn-lstm-using-tensorflow/

但是,与上面链接中的实现相比,我不想将问题视为分类问题——我只有 n 个可能的结果——而是只计算一个序列的单个值。

我尝试修改代码以适应我的问题:

import numpy as np
import random
from random import shuffle
import tensorflow as tf

NUM_EXAMPLES = 10000

train_input = ['{0:020b}'.format(i) for i in range(2**20)]
shuffle(train_input)
train_input = [map(int,i) for i in train_input]
ti = []
for i in train_input:
temp_list = []
for j in i:
temp_list.append([j])
ti.append(np.array(temp_list))
train_input = ti

train_output = []
for i in train_input:
count = 0
for j in i:
if j[0] == 1:
count+=1
#temp_list = ([0]*21)
#temp_list[count]=1
#train_output.append(temp_list)
train_output.append(count)

test_input = train_input[NUM_EXAMPLES:]
test_output = train_output[NUM_EXAMPLES:]
train_input = train_input[:NUM_EXAMPLES]
train_output = train_output[:NUM_EXAMPLES]

print "test and training data loaded"


target = tf.placeholder(tf.float32, [None, 1])
data = tf.placeholder(tf.float32, [None, 20,1]) #Number of examples, number of input, dimension of each input
#target = tf.placeholder(tf.float32, [None, 1])

#print('target shape: ', target.get_shape())
#print('shape[0]', target.get_shape()[1])
#print('int(shape) ', int(target.get_shape()[1]))

num_hidden = 24
cell = tf.nn.rnn_cell.LSTMCell(num_hidden)
val, _ = tf.nn.dynamic_rnn(cell, data, dtype=tf.float32)
val = tf.transpose(val, [1, 0, 2])

print('val shape, ', val.get_shape())

last = tf.gather(val, int(val.get_shape()[0]) - 1)

weight = tf.Variable(tf.truncated_normal([num_hidden, int(target.get_shape()[1])]))
bias = tf.Variable(tf.constant(0.1, shape=[target.get_shape()[1]]))

#prediction = tf.nn.softmax(tf.matmul(last, weight) + bias)
prediction = tf.matmul(last, weight) + bias

cross_entropy = -tf.reduce_sum(target - prediction)
optimizer = tf.train.AdamOptimizer()
minimize = optimizer.minimize(cross_entropy)

mistakes = tf.not_equal(tf.argmax(target, 1), tf.argmax(prediction, 1))
error = tf.reduce_mean(tf.cast(mistakes, tf.float32))

init_op = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init_op)

batch_size = 100
no_of_batches = int(len(train_input)) / batch_size
epoch = 500

for i in range(epoch):
ptr = 0
for j in range(no_of_batches):
inp, out = train_input[ptr:ptr+batch_size], train_output[ptr:ptr+batch_size]
ptr+=batch_size
sess.run(minimize,{data: inp, target: out})
print "Epoch ",str(i)

incorrect = sess.run(error,{data: test_input, target: test_output})

#print sess.run(prediction,{data: [[[1],[0],[0],[1],[1],[0],[1],[1],[1],[0],[1],[0],[0],[1],[1],[0],[1],[1],[1],[0]]]})
#print('Epoch {:2d} error {:3.1f}%'.format(i + 1, 100 * incorrect))

sess.close()

它仍在进行中,因为输入和交叉熵计算都是虚假的。

但是,我的主要问题是代码根本无法编译。

我收到此错误:

ValueError: Cannot feed value of shape (100,) for Tensor u'Placeholder:0', which has shape '(?, 1)'



数字 100 来自“batch_size”,而 (?, 1) 来自我的预测是一维数这一事实。但是,我不知道问题出在我的代码中吗?

任何人都可以帮我获得匹配的尺寸吗?

最佳答案

此错误意味着您的 targets占位符被喂食形状错误的东西。要修复它,我认为您应该 reshape test_output.reshape([-1, 1]) 之类的东西

关于tensorflow - 预测模式中的下一个数字,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38674197/

36 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com