- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我想在时间序列(nobs = 23)上测试平稳性,并从 statsmodels.tsa.stattools 实现 adfuller 测试。
以下是原始数据:
1995-01-01 3126.0
1996-01-01 3321.0
1997-01-01 3514.0
1998-01-01 3690.0
1999-01-01 3906.0
2000-01-01 4065.0
2001-01-01 4287.0
2002-01-01 4409.0
2003-01-01 4641.0
2004-01-01 4812.0
2005-01-01 4901.0
2006-01-01 5028.0
2007-01-01 5035.0
2008-01-01 5083.0
2009-01-01 5183.0
2010-01-01 5377.0
2011-01-01 5428.0
2012-01-01 5601.0
2013-01-01 5705.0
2014-01-01 5895.0
2015-01-01 6234.0
2016-01-01 6542.0
2017-01-01 6839.0
def test_stationarity(timeseries):
print('Results of Dickey-Fuller Test:')
dftest = adfuller(timeseries, autolag='AIC', maxlag = None)
dfoutput = pd.Series(dftest[0:4], index=['ADF Statistic', 'p-value', '#Lags Used', 'Number of Obs Used'])
for key, value in dftest[4].items():
dfoutput['Critical Value (%s)' % key] = value
print(dfoutput)
ADF Statistic -0.126550
p-value 0.946729
#Lags Used 8.000000
Number of Obs Used 14.000000
Critical Value (1%) -4.012034
Critical Value (5%) -3.104184
Critical Value (10%) -2.690987
def difference(dataset):
diff = list()
for i in range(1, len(dataset)):
value = dataset[i] - dataset[i - 1]
#print(value)
diff.append(value)
return pd.Series(diff)
ADF Statistic -1.169799
p-value 0.686451
#Lags Used 9.000000
Number of Obs Used 12.000000
Critical Value (1%) -4.137829
Critical Value (5%) -3.154972
Critical Value (10%) -2.714477
ADF Statistic -0.000000
p-value 0.958532
#Lags Used 9.000000
Number of Obs Used 11.000000
Critical Value (1%) -4.223238
Critical Value (5%) -3.189369
Critical Value (10%) -2.729839
RuntimeWarning: divide by zero encountered in double_scalars
return np.dot(wresid, wresid) / self.df_resid.
最佳答案
您看到的问题是最大滞后长度太高。首先,您的数据具有很强的趋势,因此您最初应该包括 trend="ct"
.这改善了检验统计量,但这还不够。当您不同时,差异数据具有非零均值,因此趋势应为“c”。这仍然不拒绝,因此需要双重差异。可能需要双重差异,因为该系列是持久的,但也因为 ADF 测试的功效较低。
您应该将最大滞后设置为小于样本大小的平方根。这里发生的事情是使用了太多的滞后,这减少了有效样本量,因此模型拟合接近完美。这会产生大量被选择的滞后。
from arch.unitroot import ADF
import pandas as pd
import numpy as np
y = [3126.0, 3321.0, 3514.0, 3690.0, 3906.0, 4065.0, 4287.0,
4409.0, 4641.0, 4812.0, 4901.0, 5028.0, 5035.0, 5083.0,
5183.0, 5377.0, 5428.0, 5601.0, 5705.0, 5895.0, 6234.0,
6542.0, 6839.0]
y = pd.Series(y)
max_lags = int(np.sqrt(y.shape[0]))
print(f"max_lags: {max_lags}")
ADF(y, trend="ct", max_lags=max_lags).summary()
输出
max_lags: 4
Augmented Dickey-Fuller Results
=====================================
Test Statistic -2.009
P-value 0.596
Lags 2
-------------------------------------
Trend: Constant and Linear Time Trend
Critical Values: -4.50 (1%), -3.66 (5%), -3.27 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
接下来,区别,
ADF(y.diff().dropna(), trend="c", max_lags=max_lags).summary()
返回
Augmented Dickey-Fuller Results
=====================================
Test Statistic -2.224
P-value 0.198
Lags 0
-------------------------------------
Trend: Constant
Critical Values: -3.79 (1%), -3.01 (5%), -2.65 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
不拒绝空值。再区别一次,这次是
trend="n"
,最终产生一个非常平稳的系列。
ADF(y.diff().diff().dropna(), trend="n", max_lags=max_lags).summary()
Augmented Dickey-Fuller Results
=====================================
Test Statistic -7.346
P-value 0.000
Lags 0
-------------------------------------
Trend: No Trend
Critical Values: -2.69 (1%), -1.96 (5%), -1.61 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
挑战在于,当时间序列很短时,不能完全依赖 ADF 测试。例如,差异看起来并不是特别不稳定。
关于python - Python 中的增强 Dickey-Fuller 测试存在少量观察的问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51293378/
我获得了一些源代码示例,我想测试一些功能。不幸的是,我在执行程序时遇到问题: 11:41:31 [linqus@ottsrvafq1 example]$ javac -g test/test.jav
我想测试ggplot生成的两个图是否相同。一种选择是在绘图对象上使用all.equal,但我宁愿进行更艰巨的测试以确保它们相同,这似乎是identical()为我提供的东西。 但是,当我测试使用相同d
我确实使用 JUnit5 执行我的 Maven 测试,其中所有测试类都有 @ExtendWith({ProcessExtension.class}) 注释。如果是这种情况,此扩展必须根据特殊逻辑使测试
在开始使用 Node.js 开发有用的东西之前,您的流程是什么?您是否在 VowJS、Expresso 上创建测试?你使用 Selenium 测试吗?什么时候? 我有兴趣获得一个很好的工作流程来开发我
这个问题已经有答案了: What is a NullPointerException, and how do I fix it? (12 个回答) 已关闭 3 年前。 基于示例here ,我尝试为我的
我正在考虑测试一些 Vue.js 组件,作为 Laravel 应用程序的一部分。所以,我有一个在 Blade 模板中使用并生成 GET 的组件。在 mounted 期间请求生命周期钩子(Hook)。假
考虑以下程序: #include struct Test { int a; }; int main() { Test t=Test(); std::cout<
我目前的立场是:如果我使用 web 测试(在我的例子中可能是通过 VS.NET'08 测试工具和 WatiN)以及代码覆盖率和广泛的数据来彻底测试我的 ASP.NET 应用程序,我应该不需要编写单独的
我正在使用 C#、.NET 4.7 我有 3 个字符串,即。 [test.1, test.10, test.2] 我需要对它们进行排序以获得: test.1 test.2 test.10 我可能会得到
我有一个 ID 为“rv_list”的 RecyclerView。单击任何 RecyclerView 项目时,每个项目内都有一个可见的 id 为“star”的 View 。 我想用 expresso
我正在使用 Jest 和模拟器测试 Firebase 函数,尽管这些测试可能来自竞争条件。所谓 flakey,我的意思是有时它们会通过,有时不会,即使在同一台机器上也是如此。 测试和函数是用 Type
我在测试我与 typeahead.js ( https://github.com/angular-ui/bootstrap/blob/master/src/typeahead/typeahead.js
我正在尝试使用 Teamcity 自动运行测试,但似乎当代理编译项目时,它没有正确完成,因为当我运行运行测试之类的命令时,我收到以下错误: fatal error: 'Pushwoosh/PushNo
这是我第一次玩 cucumber ,还创建了一个测试和 API 的套件。我的问题是在测试 API 时是否需要运行它? 例如我脑子里有这个, 启动 express 服务器作为后台任务 然后当它启动时(我
我有我的主要应用程序项目,然后是我的测试的第二个项目。将所有类型的测试存储在该测试项目中是一种好的做法,还是应该将一些测试驻留在主应用程序项目中? 我应该在我的主项目中保留 POJO JUnit(测试
我正在努力弄清楚如何实现这个计数。模型是用户、测试、等级 用户 has_many 测试,测试 has_many 成绩。 每个等级都有一个计算分数(strong_pass、pass、fail、stron
我正在尝试测试一些涉及 OkHttp3 的下载代码,但不幸失败了。目标:测试 下载图像文件并验证其是否有效。平台:安卓。此代码可在生产环境中运行,但测试代码没有任何意义。 产品代码 class Fil
当我想为 iOS 运行 UI 测试时,我收到以下消息: SetUp : System.Exception : Unable to determine simulator version for X 堆
我正在使用 Firebase Remote Config 在 iOS 上设置 A/B 测试。 一切都已设置完毕,我正在 iOS 应用程序中读取服务器端默认值。 但是在多个模拟器上尝试,它们都读取了默认
[已编辑]:我已经用 promise 方式更改了我的代码。 我正在写 React with this starter 由 facebook 创建,我是测试方面的新手。 现在我有一个关于图像的组件,它有
我是一名优秀的程序员,十分优秀!