- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
或者换句话说:在这种情况下使用哪种算法?我猜他们使用判别分析作为描述,例如在第 4.4 章。在詹姆斯等。阿尔。 “使用 R 中的应用程序进行统计学习简介”?
从评论中输入后,我还可以将问题重述如下:
ans <- .External2(C_modelmatrix, t, data)
(在 model.matrix.default
中)其中模型根据因子水平变化 => 我想我理解这部分。 z <- .Call(C_Cdqrls, x, y, tol, FALSE)
我没想到,线性回归和判别分析在数学层面上是一样的。stats
包是二进制文件,我无权访问源代码... ... This [factor] deconstruction can be a complex task, so we will not go into details lest it take us too far afield...
debug(lm)
的情况。
n <- 10
p <- 6
set.seed(1)
x <- seq(0, 20, length.out = n) + rnorm(n, 0, 1)
y <- c(1:3)
y <- sample(y, n, replace = TRUE)
z <- 10*y*x + 10*y + 10 + rnorm(n, 0, 1)
debug(lm)
fit <- lm(z ~ x*y)
mt <- attr(mf, "terms")
看起来像
mt
# ...
# attr(,"dataClasses")
# z x y
# "numeric" "numeric" "numeric"
n <- 10
p <- 6
set.seed(1)
x <- seq(0, 20, length.out = n) + rnorm(n, 0, 1)
y <- c(1:3)
y <- sample(y, n, replace = TRUE)
z <- 10*y*x + 10*y + 10 + rnorm(n, 0, 1)
y <- as.factor(y)
debug(lm)
fit <- lm(z ~ x*y)
mt <- attr(mf, "terms")
好像
mt
# ...
# attr(,"dataClasses")
# z x y
# "numeric" "numeric" "factor"
lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...)
还有
z <- .Call(C_Cdqrls, x, y, tol, FALSE)
我认为只有在没有因素的情况下才有效。
x <- model.matrix(mt, mf, contrasts)
之后的模型矩阵已经不同了。如果是数字
x
(Intercept) x y x:y
1 1 -0.6264538 3 -1.879361
2 1 2.4058655 1 2.405866
3 1 3.6088158 2 7.217632
4 1 8.2619475 1 8.261947
5 1 9.2183967 1 9.218397
6 1 10.2906427 2 20.581285
7 1 13.8207624 1 13.820762
8 1 16.2938803 2 32.587761
9 1 18.3535591 3 55.060677
10 1 19.6946116 2 39.389223
attr(,"assign")
[1] 0 1 2 3
x
(Intercept) x y2 y3 x:y2 x:y3
1 1 -0.6264538 0 1 0.000000 -0.6264538
2 1 2.4058655 0 0 0.000000 0.0000000
3 1 3.6088158 1 0 3.608816 0.0000000
4 1 8.2619475 0 0 0.000000 0.0000000
5 1 9.2183967 0 0 0.000000 0.0000000
6 1 10.2906427 1 0 10.290643 0.0000000
7 1 13.8207624 0 0 0.000000 0.0000000
8 1 16.2938803 1 0 16.293880 0.0000000
9 1 18.3535591 0 1 0.000000 18.3535591
10 1 19.6946116 1 0 19.694612 0.0000000
attr(,"assign")
[1] 0 1 2 2 3 3
attr(,"contrasts")
attr(,"contrasts")$`y`
[1] "contr.treatment"
最佳答案
借助 this question 的答案,我意识到,答案很简单:
如果因子属于变量(预测变量),则model.matrix
只会变大。因此很明显,C_Cdqrls
可以处理模型矩阵。
仅当因变量包含因子、线性回归或 lm
不能正常工作,判别分析是一种可能性。 (乍一看,stats::glm
似乎使用了 logit 模型。
来自 Wikipedia :
Discriminant function analysis is very similar to logistic regression, and both can be used to answer the same research questions. Logistic regression does not have as many assumptions and restrictions as discriminant analysis. However, when discriminant analysis’ assumptions are met, it is more powerful than logistic regression. Unlike logistic regression, discriminant analysis can be used with small sample sizes. It has been shown that when sample sizes are equal, and homogeneity of variance/covariance holds, discriminant analysis is more accurate. With all this being considered, logistic regression has become the common choice, since the assumptions of discriminant analysis are rarely met.
x <- seq(0, 10, length.out = 21)
y <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
y <- as.factor(y)
df <- data.frame(x = x, y = y)
# see ??numeric and the ‘Warning’ section in factor:
plot(x, as.numeric(levels(y))[y], ylim = c(0, 1.2))
fit <- lm(y ~ x, data = df)
print(summary(fit))
fit_glm <- stats::glm(y ~ x, family = binomial(link = "logit"), data = df, control = list(maxit = 50))
print(summary(fit_glm))
df$glm.probs <- stats::predict(fit_glm, newdata = df, type = "response")
df$glm.pred = ifelse(glm.probs > 0.5, 1, 0)
points(x, df$glm.pred + 0.05, col = "red")
关于r - R 的 lm 函数如何处理因子级别(在 C_Cdqrls 中?)?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56953563/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!