gpt4 book ai didi

r - 如何解决 R 中的简单优化

转载 作者:行者123 更新时间:2023-12-03 17:23:21 27 4
gpt4 key购买 nike

我正在尝试使用 R 中的 optim() 函数来解决一个简单的问题,但是我在如何实现它方面遇到了一些问题:

 e=tot_obs/(sum(Var1)+sum(Var2)+sum(Var3)+sum(Var4))
output=(Var1+Var2+Var3+Var4)*e

我知道观察值和所有变量的总数。
# Fake datasets   
# Considering that this are the observations c(1000,250,78,0,0,90)

#Known data
total_observations=1418
var1=c(1,0.3,0.5,0.01,0.05,0.6)
var2=c(500,40,40,0,0,100)
var3=c(1,0.1,0.2,0,0.1,0)
var4=c(2,0.04,0.003,0.003,0,0.05)

#Function
e=total_observations/(sum(var1)+sum(var2)+sum(var3)+sum(var4))
output=(var1+var2+var3+var4)*e

我可以在观察和输出之间做一个简单的关联,结果很好(~0.90)。这个给了我 0.97。

但现在我想测试为每个变量分配不同权重的效果。
e=tot_obs/(sum(w1*Var1)+sum(w2*Var2)+sum(w3*Var3)+sum(w4*Var4))
output=(w1*Var1+w2*Var2+w3*Var3+w4*Var4)*e
where w1+w2+w3+w4=1
and cor(observations,output)~1

我试图使用 optim() 函数,但是我完全迷失了。如果有人可以帮助我或向我指出一些关于如何做到这一点的好引用,我将不胜感激。

最佳答案

您需要使用功能 solnp包装内Rsolnp因为它允许基于相等的约束。

这个想法是建立一个函数来最小化约束和你的等式函数。

Fun <- function(param){
e <- total_observations/(sum(param[1]*var1)+sum(param[2]*var2)+sum(param[3]*var3)+sum(param[4]*var4))
output <- (param[1]*var1 + param[2]*var2 + param[3]*var3 + param[4]*var4)/e
-cor(output, observations) #We want to maximize cor and therefore minimize -cor
}

eqn <- function(param){sum(param)}

使用您的示例数据:
observations <- c(1000,250,78,0,0,90)
total_observations=1418
var1=c(1,0.3,0.5,0.01,0.05,0.6)
var2=c(500,40,40,0,0,100)
var3=c(1,0.1,0.2,0,0.1,0)
var4=c(2,0.04,0.003,0.003,0,0.05)

您的优化:
solnp(c(.1,.2,.3,.4),fun=Fun, eqfun=eqn, eqB=1)

Iter: 1 fn: -0.9793 Pars: 0.1395748 0.0008403 0.3881053 0.4714796
Iter: 2 fn: -0.9793 Pars: 0.1395531 0.0008406 0.3881409 0.4714653
solnp--> Completed in 2 iterations
$pars
[1] 0.1395530843 0.0008406453 0.3881409239 0.4714653466

$convergence
[1] 0

$values
[1] -0.9729894 -0.9793458 -0.9793458

$lagrange
[,1]
[1,] 2.521018e-06

$hessian
[,1] [,2] [,3] [,4]
[1,] 0.4843670 5.0498894 -0.08329380 0.39560040
[2,] 5.0498894 699.5317385 -2.38763807 -0.65610831
[3,] -0.0832938 -2.3876381 0.91837245 -0.09486495
[4,] 0.3956004 -0.6561083 -0.09486495 0.43979850

$ineqx0
NULL

$nfuneval
[1] 709

$outer.iter
[1] 2

$elapsed
Time difference of 0.2371149 secs

如果将其保存到变量 res 中,您要查找的内容存储在 res$pars 中.

关于r - 如何解决 R 中的简单优化,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18759854/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com