- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试通过从另一个笔记本启动它们来并行运行 jupyter 笔记本。我正在使用 papermill保存笔记本的输出。
在我的 scheduler.ipynb 中,我使用了 multiprocessing
这是什么some people取得了成功。我从基本笔记本创建进程,这似乎总是在第一次运行时工作。我可以用 sleep 10
运行 3 个笔记本在 13 秒内。如果我有一个后续单元尝试运行完全相同的东西,它产生的进程(多个笔记本)会无限期地挂起。我尝试添加代码以确保生成的进程具有退出代码并已完成,甚至在完成后调用终止它们 - 不走运,我的第二次尝试永远不会完成。
如果我做:
sean@server:~$ ps aux | grep ipython
root 2129 0.1 0.2 1117652 176904 ? Ssl 19:39 0:05 /opt/conda/anaconda/bin/python /opt/conda/anaconda/bin/ipython kernel -f /root/.local/share/jupyter/runtime/kernel-eee374ff-0760-4490-8ed0-db03fed84f0c.json
root 3418 0.1 0.2 1042076 173652 ? Ssl 19:42 0:03 /opt/conda/anaconda/bin/python /opt/conda/anaconda/bin/ipython kernel -f /root/.local/share/jupyter/runtime/kernel-3e2f09e8-969f-41c9-81cc-acd2ec4e3d54.json
root 4332 0.1 0.2 1042796 174896 ? Ssl 19:44 0:04 /opt/conda/anaconda/bin/python /opt/conda/anaconda/bin/ipython kernel -f /root/.local/share/jupyter/runtime/kernel-bbd4575c-109a-4fb3-b6ed-372beb27effd.json
root 17183 0.2 0.2 995344 145872 ? Ssl 20:26 0:02 /opt/conda/anaconda/bin/python /opt/conda/anaconda/bin/ipython kernel -f /root/.local/share/jupyter/runtime/kernel-27c48eb1-16b4-4442-9574-058283e48536.json
我看到似乎有 4 个正在运行的内核(4 个进程)。当我查看正在运行的笔记本时,我看到有 6 个正在运行的笔记本。这似乎在
a few kernels can service multiple notebooks 的文档中得到支持。 . “一个内核进程可以同时连接到多个前端”
import re
import os
import multiprocessing
from os.path import isfile
from datetime import datetime
import papermill as pm
import nbformat
# avoid "RuntimeError: This event loop is already running"
# it seems papermill used to support this but it is now undocumented:
# papermill.execute_notebook(nest_asyncio=True)
import nest_asyncio
nest_asyncio.apply()
import company.config
# # Supporting Functions
# In[ ]:
def get_papermill_parameters(notebook,
notebook_prefix='/mnt/jupyter',
notebook_suffix='.ipynb'):
if isinstance(notebook, list):
notebook_path = notebook[0]
parameters = notebook[1]
tag = '_' + notebook[2] if notebook[2] is not None else None
else:
notebook_path = notebook
parameters = None
tag = ''
basename = os.path.basename(notebook_path)
dirpath = re.sub(basename + '$', '', notebook_path)
this_notebook_suffix = notebook_suffix if not re.search(notebook_suffix + '$', basename) else ''
input_notebook = notebook_prefix + notebook_path + this_notebook_suffix
scheduler_notebook_dir = notebook_prefix + dirpath + 'scheduler/'
if not os.path.exists(scheduler_notebook_dir):
os.makedirs(scheduler_notebook_dir)
output_notebook = scheduler_notebook_dir + basename
return input_notebook, output_notebook, this_notebook_suffix, parameters, tag
# In[ ]:
def add_additional_imports(input_notebook, output_notebook, current_datetime):
notebook_name = os.path.basename(output_notebook)
notebook_dir = re.sub(notebook_name, '', output_notebook)
temp_dir = notebook_dir + current_datetime + '/temp/'
results_dir = notebook_dir + current_datetime + '/'
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
if not os.path.exists(results_dir):
os.makedirs(results_dir)
updated_notebook = temp_dir + notebook_name
first_cell = nbformat.v4.new_code_cell("""
import import_ipynb
import sys
sys.path.append('/mnt/jupyter/lib')""")
metadata = {"kernelspec": {"display_name": "PySpark", "language": "python", "name": "pyspark"}}
existing_nb = nbformat.read(input_notebook, nbformat.current_nbformat)
cells = existing_nb.cells
cells.insert(0, first_cell)
new_nb = nbformat.v4.new_notebook(cells = cells, metadata = metadata)
nbformat.write(new_nb, updated_notebook, nbformat.current_nbformat)
output_notebook = results_dir + notebook_name
return updated_notebook, output_notebook
# In[ ]:
# define this function so it is easily passed to multiprocessing
def run_papermill(input_notebook, output_notebook, parameters):
pm.execute_notebook(input_notebook, output_notebook, parameters, log_output=True)
# # Run All of the Notebooks
# In[ ]:
def run(notebooks, run_hour_utc=10, scheduler=True, additional_imports=False,
parallel=False, notebook_prefix='/mnt/jupyter'):
"""
Run provided list of notebooks on a schedule or on demand.
Args:
notebooks (list): a list of notebooks to run
run_hour_utc (int): hour to run notebooks at
scheduler (boolean): when set to True (default value) notebooks will run at run_hour_utc.
when set to False notebooks will run on demand.
additional_imports (boolean): set to True if you need to add additional imports into your notebook
parallel (boolean): whether to run the notebooks in parallel
notebook_prefix (str): path to jupyter notebooks
"""
if not scheduler or datetime.now().hour == run_hour_utc: # Only run once a day on an hourly cron job.
now = datetime.today().strftime('%Y-%m-%d_%H%M%S')
procs = []
notebooks_base_url = company.config.cluster['resources']['daedalus']['notebook'] + '/notebooks'
if parallel and len(notebooks) > 10:
raise Exception("You are trying to run {len(notebooks)}. We recommend a maximum of 10 be run at once.")
for notebook in notebooks:
input_notebook, output_notebook, this_notebook_suffix, parameters, tag = get_papermill_parameters(notebook, notebook_prefix)
if is_interactive_notebook(input_notebook):
print(f"Not running Notebook '{input_notebook}' because it's marked interactive-only.")
continue
if additional_imports:
input_notebook, output_notebook = add_additional_imports(input_notebook, output_notebook, now)
else:
output_notebook = output_notebook + tag + '_' + now + this_notebook_suffix
print(f"Running Notebook: '{input_notebook}'")
print(" - Parameters: " + str(parameters))
print(f"Saving Results to: '{output_notebook}'")
print("Link: " + re.sub(notebook_prefix, notebooks_base_url, output_notebook))
if not os.path.isfile(input_notebook):
print(f"ERROR! Notebook file does not exist: '{input_notebook}'")
else:
try:
if parameters is not None:
parameters.update({'input_notebook':input_notebook, 'output_notebook':output_notebook})
if parallel:
# trailing comma in args is in documentation for multiprocessing- it seems to matter
proc = multiprocessing.Process(target=run_papermill, args=(input_notebook, output_notebook, parameters,))
print("starting process")
proc.start()
procs.append(proc)
else:
run_papermill(input_notebook, output_notebook, parameters)
except Exception as ex:
print(ex)
print(f"ERROR! See full error in: '{output_notebook}'\n\n")
if additional_imports:
temp_dir = re.sub(os.path.basename(input_notebook), '', input_notebook)
if os.path.exists(temp_dir):
os.system(f"rm -rf '{temp_dir}'")
if procs:
print("joining")
for proc in procs:
proc.join()
if procs:
print("terminating")
for proc in procs:
print(proc.is_alive())
print(proc.exitcode)
proc.terminate()
print(f"Done: Processed all {len(notebooks)} notebooks.")
else:
print(f"Waiting until {run_hour_utc}:00:00 UTC to run.")
我正在使用 python==3.6.12,papermill==2.2.2
jupyter core : 4.7.0
jupyter-notebook : 5.5.0
ipython : 7.16.1
ipykernel : 5.3.4
jupyter client : 6.1.7
ipywidgets : 7.2.1
最佳答案
您是否尝试过使用 subprocess
模块?对您来说,这似乎是一个更好的选择,而不是多处理。它允许您异步生成将并行运行的子进程,这可用于调用命令和程序,就像您使用 shell 一样。我发现编写 python 脚本而不是 bash 脚本真的很有用。
因此,您可以使用主笔记本将其他笔记本作为独立的子进程与 subprocesses.run(your_function_with_papermill)
并行运行.
关于python - 挂细胞 : running multiple jupyter notebooks in parallel with papermill,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65571729/
我正在寻找一种方法来轻松执行 Jupyter Notebooks 的参数化运行,并且我找到了 Papermill 项目 ( https://github.com/nteract/papermill/)
当 papermill 生成笔记本时,会在输出路径中创建一个 .ipynb 文件,表明它没有在 jupyter 主页中运行。我更希望 notebook 完成执行后,它会继续使用实时内核运行,这样我就可
我有一个设置,其中我有一些参数化的 Jupyter 笔记本,因此我可以从另一个笔记本运行它们。 我正在使用 papermill 模块来执行此操作,这非常方便。最简单的运行方式看起来像这样 path =
我想传递一个变量中的所有参数。为了实现这一点,我使用以下方法在 Python 客户端中为 Papermill 传递字典: params = {"aviral":"srivastava"} pm.exe
我有一个 refresh_data.sh 文件,其中包含多个 papermill 命令,例如: papermill notebook_1.ipynb output_1.ipynb -p start "
我正在使用气流(docker)运行造纸厂命令。该脚本存储在 S3 上,我使用纸厂的 Python 客户端运行它。它以一个完全无法理解的错误结束: Traceback (most recent call
我正在使用 Papermill 的 python 客户端运行 jupyter 笔记本脚本。运行时,我想指定内核。但是,该脚本在与我的事件 python shell 相同的内核中运行(我通过它对 pap
我正在尝试通过从另一个笔记本启动它们来并行运行 jupyter 笔记本。我正在使用 papermill保存笔记本的输出。 在我的 scheduler.ipynb 中,我使用了 multiprocess
我正在使用 papermill 库同时使用多处理运行多个笔记本。 这发生在 Python 3.6.6、Red Hat 4.8.2-15 上的 Docker 容器中。 但是,当我运行 python 脚本
我有几个笔记本,它们由使用造纸厂的“驱动程序”笔记本运行。这些笔记本电脑使用剪贴簿库向驾驶员传达信息。然后,驱动程序将此信息作为参数传递给其他笔记本。我想使用 EMR Notebooks 来优化这个“
我正在尝试运行一个示例 papermill 笔记本,您可以找到它 here : 在官方 Apache Airflow 网址上 airflow-github 带有对应的 dag 文件,在上面指定的相同目
我是一名优秀的程序员,十分优秀!