- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
拥有500个,持续增长DataFrames
,我想提交对(每个DataFrame独立的)数据的操作到dask
.我的主要问题是:可以 dask
保持不断提交的数据,所以我可以submit
对所有提交的数据的功能 - 不仅仅是新提交的?
但是让我们用一个例子来解释它:
创建 dask_server.py
:
from dask.distributed import Client, LocalCluster
HOST = '127.0.0.1'
SCHEDULER_PORT = 8711
DASHBOARD_PORT = ':8710'
def run_cluster():
cluster = LocalCluster(dashboard_address=DASHBOARD_PORT, scheduler_port=SCHEDULER_PORT, n_workers=8)
print("DASK Cluster Dashboard = http://%s%s/status" % (HOST, DASHBOARD_PORT))
client = Client(cluster)
print(client)
print("Press Enter to quit ...")
input()
if __name__ == '__main__':
run_cluster()
my_stream.py
连接并开始到
submit
和
gather
数据:
DASK_CLIENT_IP = '127.0.0.1'
dask_con_string = 'tcp://%s:%s' % (DASK_CLIENT_IP, DASK_CLIENT_PORT)
dask_client = Client(self.dask_con_string)
def my_dask_function(lines):
return lines['a'].mean() + lines['b'].mean
def async_stream_redis_to_d(max_chunk_size = 1000):
while 1:
# This is a redis queue, but can be any queueing/file-stream/syslog or whatever
lines = self.queue_IN.get(block=True, max_chunk_size=max_chunk_size)
futures = []
df = pd.DataFrame(data=lines, columns=['a','b','c'])
futures.append(dask_client.submit(my_dask_function, df))
result = self.dask_client.gather(futures)
print(result)
time sleep(0.1)
if __name__ == '__main__':
max_chunk_size = 1000
thread_stream_data_from_redis = threading.Thread(target=streamer.async_stream_redis_to_d, args=[max_chunk_size])
#thread_stream_data_from_redis.setDaemon(True)
thread_stream_data_from_redis.start()
# Lets go
append
lines
首先在计算发生之前 - 想知道这是否可能?所以在我们这里的例子中,我想计算
mean
已提交的所有行,而不仅仅是最后提交的行。
submit
所有数据到集群最佳答案
将 future 列表分配给已发布的数据集对我来说似乎是理想的。这是相对便宜的(一切都是元数据),您将在几毫秒内保持最新状态
client.datasets["x"] = list_of_futures
def worker_function(...):
futures = get_client().datasets["x"]
data = get_client.gather(futures)
... work with data
关于python-3.x - Dask:持续提交,处理所有提交的数据,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61776056/
如果我有一个依赖于某些全局或其他常量的函数,如下所示: x = 123 def f(partition): return partition + x # note that x is def
我们可以通过哪些方式在 Dask Arrays 中执行项目分配?即使是一个非常简单的项目分配,如:a[0] = 2 不起作用。 最佳答案 正确的。这是文档中提到的第一个限制。 通常,涉及 for 循环
[mapr@impetus-i0057 latest_code_deepak]$ dask-worker 172.26.32.37:8786 distributed.nanny - INFO -
我正在构建一个 FastAPI 应用程序,它将为 Dask 数组的 block 提供服务。我想利用 FastAPI's asynchronous functionality旁边Dask-distrib
在延迟数据帧处理的几个阶段之后,我需要在保存数据帧之前对其进行重新分区。但是,.repartition() 方法要求我知道分区的数量(而不是分区的大小),这取决于处理后数据的大小,这是未知的。 我想我
我正在努力转换 dask.bag将字典放入 dask.delayed pandas.DataFrames进入决赛 dask.dataframe 我有一个函数 (make_dict) 将文件读入一个相当
我正在尝试使用 dask_cudf/dask 读取单个大型 parquet 文件(大小 > gpu_size),但它目前正在读取它到一个分区中,我猜这是从文档字符串推断出的预期行为: dask.dat
当启动一个 dask 分布式本地集群时,您可以为 dashboard_address 设置一个随机端口或地址。 如果稍后获取scheduler对象。有没有办法提取仪表板的地址。 我有这个: clust
我有一个 dask 数据框,由 parquet 支持。它有 1.31 亿行,当我对整个帧执行一些基本操作时,它们需要几分钟。 df = dd.read_parquet('data_*.pqt') un
我正在使用 24 个 vCPU 的谷歌云计算实例。运行代码如下 import dask.dataframe as dd from distributed import Client client =
我正在尝试在多台机器上分发一个大型 Dask 数据帧,以便(稍后)在数据帧上进行分布式计算。我为此使用了 dask-distributed。 我看到的所有 dask 分布式示例/文档都是从网络资源(h
我在 Django 服务器后面使用 Dask,这里总结了我的基本设置:https://github.com/MoonVision/django-dask-demo/可以在这里找到 Dask 客户端:h
我有以下格式的 Dask DataFrame: date hour device param value 20190701 21 dev_01 att_1 0.00
我正在尝试使用 dask 而不是 Pandas,因为我有 2.6gb csv 文件。 我加载它,我想删除一列。但似乎无论是 drop 方法 df.drop('column') 或切片 df[ : ,
我有一个比我的内存大得多的文本文件。我想按字典顺序对该文件的行进行排序。我知道如何手动完成: 分成适合内存的块 对块进行排序 合并块 我想用 dask 来做。我认为处理大量数据将是 dask 的一个用
使用 Dask 的分布式调度程序时,我有一个正在远程工作人员上运行的任务,我想停止该任务。 我该如何阻止?我知道取消方法,但如果任务已经开始执行,这似乎不起作用。 最佳答案 如果它还没有运行 如果任务
我需要将一个非常大的 dask.bag 的元素提交到一个非线程安全的存储区,即我需要类似的东西 for x in dbag: store.add(x) 我无法使用compute,因为包太大,无
如果我有一个已经索引的 Dask 数据框 >>> A.divisions (None, None) >>> A.npartitions 1 我想设置分区,到目前为止我正在做 A.reset_index
根据 this回答,如果 Dask 知道数据帧的索引已排序,则 Dask 数据帧可以执行智能索引。 如果索引已排序,我如何让 Dask 知道? 在我的具体情况下,我正在做这样的事情: for sour
我想从具有特定数量的工作人员的 python 启动本地集群,然后将客户端连接到它。 cluster = LocalCluster(n_workers=8, ip='127.0.0.1') client
我是一名优秀的程序员,十分优秀!