gpt4 book ai didi

python - 将回归树输出转换为 Pandas 表

转载 作者:行者123 更新时间:2023-12-03 17:10:47 30 4
gpt4 key购买 nike

此代码适合 Python 中的回归树。我想将此基于文本的输出转换为表格格式。
已经研究过这个( Convert a decision tree to a table )但是给定的解决方案不起作用。

import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree

dataset = np.array(
[['Asset Flip', 100, 1000],
['Text Based', 500, 3000],
['Visual Novel', 1500, 5000],
['2D Pixel Art', 3500, 8000],
['2D Vector Art', 5000, 6500],
['Strategy', 6000, 7000],
['First Person Shooter', 8000, 15000],
['Simulator', 9500, 20000],
['Racing', 12000, 21000],
['RPG', 14000, 25000],
['Sandbox', 15500, 27000],
['Open-World', 16500, 30000],
['MMOFPS', 25000, 52000],
['MMORPG', 30000, 80000]
])

X = dataset[:, 1:2].astype(int)

y = dataset[:, 2].astype(int)

regressor = DecisionTreeRegressor(random_state = 0)

regressor.fit(X, y)

text_rule = tree.export_text(regressor )

print(text_rule)
我得到的输出是这样的
print(text_rule)
|--- feature_0 <= 20750.00
| |--- feature_0 <= 7000.00
| | |--- feature_0 <= 1000.00
| | | |--- feature_0 <= 300.00
| | | | |--- value: [1000.00]
| | | |--- feature_0 > 300.00
| | | | |--- value: [3000.00]
| | |--- feature_0 > 1000.00
| | | |--- feature_0 <= 2500.00
| | | | |--- value: [5000.00]
| | | |--- feature_0 > 2500.00
| | | | |--- feature_0 <= 4250.00
| | | | | |--- value: [8000.00]
| | | | |--- feature_0 > 4250.00
| | | | | |--- feature_0 <= 5500.00
| | | | | | |--- value: [6500.00]
| | | | | |--- feature_0 > 5500.00
| | | | | | |--- value: [7000.00]
| |--- feature_0 > 7000.00
| | |--- feature_0 <= 13000.00
| | | |--- feature_0 <= 8750.00
| | | | |--- value: [15000.00]
| | | |--- feature_0 > 8750.00
| | | | |--- feature_0 <= 10750.00
| | | | | |--- value: [20000.00]
| | | | |--- feature_0 > 10750.00
| | | | | |--- value: [21000.00]
| | |--- feature_0 > 13000.00
| | | |--- feature_0 <= 16000.00
| | | | |--- feature_0 <= 14750.00
| | | | | |--- value: [25000.00]
| | | | |--- feature_0 > 14750.00
| | | | | |--- value: [27000.00]
| | | |--- feature_0 > 16000.00
| | | | |--- value: [30000.00]
|--- feature_0 > 20750.00
| |--- feature_0 <= 27500.00
| | |--- value: [52000.00]
| |--- feature_0 > 27500.00
| | |--- value: [80000.00]
我想将此规则转换为类似于以下形式的 Pandas 表。这该怎么做 ?
enter image description here
规则的绘图版本是这样的(供引用)。请注意,我在表格中展示了规则的最左边部分。
enter image description here

最佳答案

修改来自 linked answer 的代码:

import sklearn
import pandas as pd

def tree_to_df(reg_tree, feature_names):
tree_ = reg_tree.tree_
feature_name = [
feature_names[i] if i != sklearn.tree._tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]

def recurse(node, row, ret):
if tree_.feature[node] != sklearn.tree._tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
# Add rule to row and search left branch
row[-1].append(name + " <= " + str(threshold))
recurse(tree_.children_left[node], row, ret)
# Add rule to row and search right branch
row[-1].append(name + " > " + str(threshold))
recurse(tree_.children_right[node], row, ret)
else:
# Add output rules and start a new row
label = tree_.value[node]
ret.append("return " + str(label[0][0]))
row.append([])

# Initialize
rules = [[]]
vals = []

# Call recursive function with initial values
recurse(0, rules, vals)

# Convert to table and output
df = pd.DataFrame(rules).dropna(how='all')
df['Return'] = pd.Series(vals)
return df
这将返回一个 Pandas 数据框:
                     0                   1                   2                 3          Return
0 feature <= 20750.0 feature <= 7000.0 feature <= 1000.0 feature <= 300.0 return 1000.0
1 feature > 300.0 None None None return 3000.0
2 feature > 1000.0 feature <= 2500.0 None None return 5000.0
3 feature > 2500.0 feature <= 4250.0 None None return 8000.0
4 feature > 4250.0 feature <= 5500.0 None None return 6500.0
5 feature > 5500.0 None None None return 7000.0
6 feature > 7000.0 feature <= 13000.0 feature <= 8750.0 None return 15000.0
7 feature > 8750.0 feature <= 10750.0 None None return 20000.0
8 feature > 10750.0 None None None return 21000.0
9 feature > 13000.0 feature <= 16000.0 feature <= 14750.0 None return 25000.0
10 feature > 14750.0 None None None return 27000.0
11 feature > 16000.0 None None None return 30000.0
12 feature > 20750.0 feature <= 27500.0 None None return 52000.0
13 feature > 27500.0 None None None return 80000.0

关于python - 将回归树输出转换为 Pandas 表,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63746507/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com