作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
给定一个表示离散坐标变换函数的 4D 数组,使得arr[x_in, y_in, z_in] = [x_out, y_out, z_out]
我想插值 arr
到具有更多元素的网格(假设 arr
中的样本最初是从较高元素立方体的规则间隔网格中提取的)。
我试过 RegularGridInterpolator
来自scipy,但是这相当缓慢:
import numpy as np
from scipy.interpolate import RegularGridInterpolator
from time import time
target_size = 32
reduced_size = 5
small_shape = (reduced_size,reduced_size,reduced_size,3)
cube_small = np.random.randint(target_size, size=small_shape, dtype=np.uint8)
igrid = 3*[np.linspace(0, target_size-1, reduced_size)]
large_shape = (target_size, target_size, target_size,3)
cube_large = np.empty(large_shape)
t0 = time()
interpol = RegularGridInterpolator(igrid, cube_small)
for x in np.arange(target_size):
for y in np.arange(target_size):
for z in np.arange(target_size):
cube_large[x,y,z] = interpol([x,y,z])
print(time()-t0)
有没有想到更适合该任务的算法?也许有一些东西可以利用这样一个事实,即在这种情况下,我只对每个点的离散整数值感兴趣。
最佳答案
我真的不能说网格的生成,因为我不完全确定您要做什么。
但是就提高效率而言,使用三重 for 循环而不是使用广播会大大减慢您的代码速度
import itertools
import numpy as np
from scipy.interpolate import RegularGridInterpolator
from time import time
target_size = 32
reduced_size = 5
small_shape = (reduced_size,reduced_size,reduced_size,3)
cube_small = np.random.randint(target_size, size=small_shape, dtype=np.uint8)
igrid = 3*[np.linspace(0, target_size-1, reduced_size)]
large_shape = (target_size, target_size, target_size,3)
cube_large = np.empty(large_shape)
def original_method():
t0 = time()
interpol = RegularGridInterpolator(igrid, cube_small)
for x in np.arange(target_size):
for y in np.arange(target_size):
for z in np.arange(target_size):
cube_large[x,y,z] = interpol([x,y,z])
print('ORIGINAL METHOD: ', time()-t0)
return cube_large
def improved_method():
t1 = time()
interpol = RegularGridInterpolator(igrid, cube_small)
arr = np.arange(target_size)
grid = np.array(list(itertools.product(arr, repeat=3)))
cube_large = interpol(grid).reshape(target_size, target_size, target_size, 3)
print('IMPROVED METHOD:', time() - t1)
return cube_large
c1 = original_method()
c2 = improved_method()
print('Is the result the same? ', np.all(c1 == c2))
输出
ORIGINAL METHOD: 6.9040000438690186
IMPROVED METHOD: 0.026999950408935547
Is the result the same? True
关于Python:快速离散插值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63861955/
我是一名优秀的程序员,十分优秀!