gpt4 book ai didi

Python:快速离散插值

转载 作者:行者123 更新时间:2023-12-03 17:10:43 24 4
gpt4 key购买 nike

给定一个表示离散坐标变换函数的 4D 数组,使得arr[x_in, y_in, z_in] = [x_out, y_out, z_out]我想插值 arr到具有更多元素的网格(假设 arr 中的样本最初是从较高元素立方体的规则间隔网格中提取的)。
我试过 RegularGridInterpolator来自scipy,但是这相当缓慢:

import numpy as np
from scipy.interpolate import RegularGridInterpolator
from time import time

target_size = 32
reduced_size = 5

small_shape = (reduced_size,reduced_size,reduced_size,3)
cube_small = np.random.randint(target_size, size=small_shape, dtype=np.uint8)

igrid = 3*[np.linspace(0, target_size-1, reduced_size)]
large_shape = (target_size, target_size, target_size,3)
cube_large = np.empty(large_shape)

t0 = time()
interpol = RegularGridInterpolator(igrid, cube_small)
for x in np.arange(target_size):
for y in np.arange(target_size):
for z in np.arange(target_size):
cube_large[x,y,z] = interpol([x,y,z])
print(time()-t0)
有没有想到更适合该任务的算法?也许有一些东西可以利用这样一个事实,即在这种情况下,我只对每个点的离散整数值感兴趣。

最佳答案

我真的不能说网格的生成,因为我不完全确定您要做什么。
但是就提高效率而言,使用三重 for 循环而不是使用广播会大大减慢您的代码速度

import itertools
import numpy as np
from scipy.interpolate import RegularGridInterpolator
from time import time

target_size = 32
reduced_size = 5

small_shape = (reduced_size,reduced_size,reduced_size,3)
cube_small = np.random.randint(target_size, size=small_shape, dtype=np.uint8)


igrid = 3*[np.linspace(0, target_size-1, reduced_size)]


large_shape = (target_size, target_size, target_size,3)
cube_large = np.empty(large_shape)

def original_method():
t0 = time()

interpol = RegularGridInterpolator(igrid, cube_small)
for x in np.arange(target_size):
for y in np.arange(target_size):
for z in np.arange(target_size):
cube_large[x,y,z] = interpol([x,y,z])

print('ORIGINAL METHOD: ', time()-t0)
return cube_large

def improved_method():
t1 = time()
interpol = RegularGridInterpolator(igrid, cube_small)

arr = np.arange(target_size)
grid = np.array(list(itertools.product(arr, repeat=3)))
cube_large = interpol(grid).reshape(target_size, target_size, target_size, 3)

print('IMPROVED METHOD:', time() - t1)

return cube_large


c1 = original_method()
c2 = improved_method()

print('Is the result the same? ', np.all(c1 == c2))
输出
ORIGINAL METHOD:  6.9040000438690186
IMPROVED METHOD: 0.026999950408935547
Is the result the same? True

关于Python:快速离散插值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63861955/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com