- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
假设我有一个包含 5 个字符串的列表,例如:
AAAAB
BBBBA
BBBBA
ABBBB
我想找到并计算每个可能的 4 个字符的子字符串,并跟踪它们来自的唯一 5 个字符串的数量。这意味着虽然 BBBB 在三个不同的字符串来源中找到,但只有两个独特的来源。
substring repeats unique sources
0 AAAA 1 1
1 AAAB 1 1
2 BBBB 3 2
3 BBBA 2 1
4 ABBB 1 1
我已经设法仅使用 Python、一个更新的字典和两个用于比较现有子字符串和全长字符串的列表来小规模地做到这一点。但是,当将其应用于我的完整数据集(约 160 000 个全长字符串(12 个字符)产生 1.5 亿个子字符串(4 个字符))时,常量字典更新和列表比较过程太慢(我的脚本现在已经运行了一个星期)。
最佳答案
TLDR :对于您描述的数据规模,这是在我的计算机上估计需要大约 2 小时的尝试。
import numpy as np
import pandas as pd
def substring_search(fullstrings, sublen=4):
'''
fullstrings: array like of strings
sublen: length of substring to search
'''
# PART 1: FIND SUBSTRINGS
# length of full strings, assumes all are same
strsize = len(fullstrings[0])
# get unique strings, # occurences
strs, counts = np.unique(fullstrings, return_counts=True)
fullstrings = pd.DataFrame({'string':strs,
'count':counts})
unique_n = len(fullstrings)
# create array to hold substrings
substrings = np.empty(unique_n * (strsize - sublen + 1), dtype=str)
substrings = pd.Series(substrings)
# slice to find each substring
c = 0
while c + sublen <= strsize:
sliced = fullstrings['string'].str.slice(c, c+sublen)
s = c * unique_n
e = s + unique_n
substrings[s: e] = sliced
c += 1
# take the set of substrings, save in output df
substrings = np.unique(substrings)
output = pd.DataFrame({'substrings':substrings,
'repeats': 0,
'unique_sources': 0})
# PART 2: CHECKING FULL STRINGS FOR SUBSTRINGS
for i, s in enumerate(output['substrings']):
# check which fullstrings contain each substring
idx = fullstrings['string'].str.contains(s)
count = fullstrings['count'][idx].sum()
output.loc[i, 'repeats'] = count
output.loc[i, 'unique_sources'] = idx.sum()
print('Finished!')
return output
应用于您的示例:
>>> example = ['AAAAB', 'BBBBA', 'BBBBA', 'ABBBB']
>>> substring_search(example)
substrings repeats unique_sources
0 AAAA 1 1
1 AAAB 1 1
2 ABBB 1 1
3 BBBA 2 1
4 BBBB 3 2
pandas
检查完整字符串列表。
str
方法。这节省了一个 for 循环(即您不会为每个子字符串遍历每个完整字符串)。另一个想法是只检查唯一的完整字符串(除了唯一的子字符串);您事先保存每个完整字符串的出现次数并在最后更正计数。
pandas.Series.str.slice
执行此操作)pandas.Series.str.contains
以(元素方式)检查完整的字符串。由于这些是唯一的并且我们知道每个发生的次数,我们可以同时填写 repeats
和 unique_sources
. n = 100
size = 12
letters = list(string.ascii_uppercase[:20])
bigger = [''.join(np.random.choice(letters, size)) for i in range(n)]
所以
bigger
是
n
size
-长度字符串:
['FQHMHSOIEKGO',
'FLLNCKAHFISM',
'LDKKRKJROIRL',
...
'KDTTLOKCDMCD',
'SKLNSAQQBQHJ',
'TAIAGSIEQSGI']
使用打印进度的修改代码(在下面发布),我尝试使用
n=150000
和
size=12
,并得到这个初始输出:
Starting main loop...
5%, 344.59 seconds
10.0%, 685.28 seconds
所以
10 * 685 秒/60(秒/分钟)= ~114 分钟 .所以 2 小时并不理想,但实际上比 1 周更有用。我不怀疑有一些更聪明的方法可以做到这一点,但如果没有发布其他内容,这可能会有所帮助。
contains
),还是您想要它出现在完整字符串中的次数(即
count
)。至少希望这是一个小的改变。
#PART 2
中只有其他语句:
def substring_search_progress(fullstrings, sublen=4):
'''
fullstrings: array like of strings
sublen: length of substring to search
'''
# PART 1: FIND SUBSTRINGS
# length of full strings, assumes all are same
strsize = len(fullstrings[0])
# get unique strings, # occurences
strs, counts = np.unique(fullstrings, return_counts=True)
fullstrings = pd.DataFrame({'string':strs,
'count':counts})
unique_n = len(fullstrings)
# create array to hold substrings
substrings = np.empty(unique_n * (strsize - sublen + 1), dtype=str)
substrings = pd.Series(substrings)
# slice to find each substring
c = 0
while c + sublen <= strsize:
sliced = fullstrings['string'].str.slice(c, c+sublen)
s = c * unique_n
e = s + unique_n
substrings[s: e] = sliced
c += 1
# take the set of substrings, save in output df
substrings = np.unique(substrings)
output = pd.DataFrame({'substrings':substrings,
'repeats': 0,
'unique_sources': 0})
# PART 2: CHECKING FULL STRINGS FOR SUBSTRINGS
# for marking progress
total = len(output)
every = 5
progress = every
# main loop
print('Starting main loop...')
start = time.time()
for i, s in enumerate(output['substrings']):
# progress
if (i / total * 100) > progress:
now = round(time.time() - start, 2)
print(f'{progress}%, {now} seconds')
progress = (((i / total * 100) // every) + 1) * every
# check which fullstrings contain each substring
idx = fullstrings['string'].str.contains(s)
count = fullstrings['count'][idx].sum()
output.loc[i, 'repeats'] = count
output.loc[i, 'unique_sources'] = idx.sum()
print('Finished!')
return output
关于Python pandas 计算子字符串的唯一字符串源的数量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67402873/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!