gpt4 book ai didi

python - 根据多列聚合函数的条件结果计算唯一记录

转载 作者:行者123 更新时间:2023-12-03 17:09:02 24 4
gpt4 key购买 nike

我的数据如下所示:

df = pd.DataFrame({'ID': [1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4,
4, 4, 5, 5, 5],
'group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B',
'B', 'B', 'B', 'B', 'B', 'B'],
'attempts': [0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, 0, 1, 0],
'successes': [1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 1, 0, 1],
'score': [None, 5, 5, 4, 5, 4, 5, None, 1, 5,
0, 1, None, None, 1, None]})

## df output
ID group attempts successes score
0 1 A 0 1 None
1 1 A 1 0 5
2 1 A 1 0 5
3 1 A 1 0 4
4 2 A 1 0 5
5 2 A 1 0 4
6 3 A 1 0 5
7 3 A 0 1 None
8 3 A 1 0 1
9 4 B 1 0 5
10 4 B 1 0 0
11 4 B 1 0 1
12 4 B 0 1 None
13 5 B 0 1 None
14 5 B 1 0 1
15 5 B 0 1 None
我正在尝试按两列( groupscore )分组并计算唯一 ID 的数量在首先确定哪些组 ( group , ID ) 至少有 1 successes 之后计入所有 score值。换句话说,如果 ID 至少有一个相关的成功,我只想在聚合中计算一次(唯一)ID。我也只想计算每个( groupID )对的唯一 ID,而不管 attempt_counts 的数量如何。它包含(即如果有 5 个成功计数的总和,我只想包括 1 个)。 successesattempts列是二进制的(只有 1 或 0)。例如,对于 ID = 1,组 = A,至少有 1 次成功。因此,在计算每个( groupscore )唯一 ID 的数量时,我将包括 ID .
我想要 最终输出看起来像这样,以便我可以计算每个( groupscore )组合的唯一成功与唯一尝试的比率。
group score successes_count attempts_counts ratio
A 5 2 3 0.67
4 1 2 0.50
1 1 1 1.0
0 0 0 inf
B 5 1 1 1.0
4 0 0 inf
1 2 2 1.0
0 1 1 1.0

到目前为止,我已经能够运行一个数据透视表来计算每个( groupID )的总和,以识别那些至少有 1 个成功的 ID。但是,我不确定使用它来达到我想要的最终状态的最佳方法。
p = pd.pivot_table(data=df_new,
values=['ID'],
index=['group', 'ID'],
columns=['successes', 'attempts'],
aggfunc={'ID': 'count'})
# p output
ID
successes 0 1
attempts 1 0
group ID
A 1 3.0 1.0
2 2.0 NaN
3 2.0 1.0
B 4 3.0 1.0
5 1.0 2.0

最佳答案

让我们尝试这样的事情:

import numpy as np
import pandas as pd

df = pd.DataFrame({'ID': [1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4,
4, 4, 5, 5, 5],
'group': ['A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B',
'B', 'B', 'B', 'B', 'B', 'B'],
'attempts': [0, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 0, 0, 1, 0],
'successes': [1, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 1, 0, 1],
'score': [None, 5, 5, 4, 5, 4, 5, None, 1, 5,
0, 1, None, None, 1, None]})

# Groups With At least 1 Success
m = df.groupby('group')['successes'].transform('max').astype(bool)
# Filter Out
df = df[m]

# Replace 0 successes with NaNs
df['successes'] = df['successes'].replace(0, np.nan)
# FFill BFill each group so that any success will fill the group
df['successes'] = df.groupby(['ID', 'group'])['successes'] \
.apply(lambda s: s.ffill().bfill())

# Pivot then stack to make sure each group has all score values
# Sort and reset index
# Rename Columns
# fix types
p = df.drop_duplicates() \
.pivot_table(index='group',
columns='score',
values=['attempts', 'successes'],
aggfunc='sum',
fill_value=0) \
.stack() \
.sort_values(['group', 'score'], ascending=[True, False]) \
.reset_index() \
.rename(columns={'attempts': 'attempts_counts',
'successes': 'successes_count'}) \
.convert_dtypes()

# Calculate Ratio
p['ratio'] = p['successes_count'] / p['attempts_counts']
print(p)
输出:
  group  score  attempts_counts  successes_count     ratio
0 A 5 3 2 0.666667
1 A 4 2 1 0.5
2 A 1 1 1 1.0
3 A 0 0 0 NaN
4 B 5 1 1 1.0
5 B 4 0 0 NaN
6 B 1 2 2 1.0
7 B 0 1 1 1.0

关于python - 根据多列聚合函数的条件结果计算唯一记录,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/67464114/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com