gpt4 book ai didi

c - 如何优化这个 Langton's ant sim?

转载 作者:行者123 更新时间:2023-12-03 16:53:06 29 4
gpt4 key购买 nike

我正在编写 Langton 的 Ant sim(用于规则字符串 RLR)并试图优化它以提高速度。这是目前的相关代码:

#define AREA_X 65536
#define AREA_Y 65536
#define TURN_LEFT 3
#define TURN_RIGHT 1
int main()
{
uint_fast8_t* state;
uint_fast64_t ant=((AREA_Y/2)*AREA_X) + (AREA_X/2);
uint_fast8_t ant_orientation=0;
uint_fast8_t two_pow_five=32;
uint32_t two_pow_thirty_two=0;/*not fast, relying on exact width for overflow*/
uint_fast8_t change_orientation[4]={0, TURN_RIGHT, TURN_LEFT, TURN_RIGHT};
int_fast64_t* move_ant={AREA_X, 1, -AREA_X, -1};
... initialise empty state
while(1)
{
while(two_pow_five--)/*removing this by doing 32 steps per inner loop, ~16% longer*/
{
while(--two_pow_thirty_two)
{
/*one iteration*/
/* 54 seconds for init + 2^32 steps
ant_orientation = ( ant_orientation + (117>>((++state[ant])*2 )) )&3;
state[ant] = (36 >> (state[ant] *2) ) & 3;
ant+=move_ant[ant_orientation];
*/

/* 47 seconds for init + 2^32 steps
ant_orientation = ( ant_orientation + ((state[ant])==1?3:1) )&3;
state[ant] += (state[ant]==2)?-2:1;
ant+=move_ant[ant_orientation];
*/

/* 46 seconds for init + 2^32 steps
ant_orientation = ( ant_orientation + ((state[ant])==1?3:1) )&3;
if(state[ant]==2)
{
--state[ant];
--state[ant];
}
else
++state[ant];
ant+=move_ant[ant_orientation];
*/

/* 44 seconds for init + 2^32 steps
ant_orientation = ( ant_orientation + ((++state[ant])==2?3:1) )&3;
if(state[ant]==3)state[ant]=0;
ant+=move_ant[ant_orientation];
*/

// 37 seconds for init + 2^32 steps
// handle every situation with nested switches and constants
switch(ant_orientation)
{
case 0:
switch(state[ant])
{
case 0:
ant_orientation=1;
state[ant]=1;
++ant;
break;
case 1:
ant_orientation=3;
state[ant]=2;
--ant;
break;
case 2:
ant_orientation=1;
state[ant]=0;
++ant;
break;
}
break;
case 1:
switch(state[ant])
{
...
}
break;
case 2:
switch(state[ant])
{
...
}
break;
case 3:
switch(state[ant])
{
...
}
break;
}

}
}
two_pow_five=32;
... dump to file every 2^37 steps
}
return 0;
}

我有两个问题:

  1. 我已尝试通过反复试验来尽可能优化 c,是否有任何我没有利用的技巧?请尝试用 c 而不是汇编来交谈,尽管我可能会在某个时候尝试汇编。

  2. 是否有更好的方法对问题进行建模以提高速度?

更多信息:便携性并不重要。我在 64 位 linux 上,使用 gcc、i5-2500k 和 16 GB 内存。目前的状态数组使用 4GiB,程序可以使用 12GiB 的 ram。 sizeof(uint_fast8_t)=1。有意不存在边界检查,很容易从转储中手动发现损坏。

编辑:也许与直觉相反,堆积 switch 语句而不是消除它们已经产生了迄今为止最好的效率。

编辑:我重新建模了问题并提出了比每次迭代一个步骤更快的方法。以前,每个状态元素使用两位并描述朗顿 Ant 网格中的单个单元格。新方法使用所有 8 位,并描述网格的 2x2 部分。每次迭代都会完成可变数量的步骤,方法是查找步数、新方向和当前状态+方向的新状态的预先计算值。假设一切都同样可能,它平均每次迭代采取 2 个步骤。作为奖励,它使用 1/4 的内存来模拟相同的区域:

while(--iteration)
{
// roughly 31 seconds per 2^32 steps
table_offset=(state[ant]*24)+(ant_orientation*3);
it+=twoxtwo_table[table_offset+0];
state[ant]=twoxtwo_table[table_offset+2];
ant+=move_ant2x2[(ant_orientation=twoxtwo_table[table_offset+1])];
}

还没有尝试优化它,接下来要尝试的是像以前一样使用嵌套开关和常量消除偏移方程和查找(但使用 648 个内部案例而不是 12 个)。

最佳答案

或者,您可以使用单个无符号字节常量作为人工寄存器而不是分支:

value:   1  3  1  1
bits: 01 11 01 01 ---->101 decimal value for an unsigned byte
index 3 2 1 0 ---> get first 2 bits to get "1" (no shift)
--> get second 2 bits to get "1" (shifting for 2 times)
--> get third 2 bits to get "3" (shifting for 4 times)
--> get last 2 bits to get "1" (shifting for 6 times)

Then "AND" the result with binary(11) or decimal(3) to get your value.

(101>>( (++state[ant])*2 ) ) & 3 would give you the turnright or turnleft

Example:
++state[ant]= 0: ( 101>>( (0)*2 ) )&3 --> 101 & 3 = 1
++state[ant]= 1: ( 101>>( (1)*2 ) )&3 --> 101>>2 & 3 = 1
++state[ant]= 2: ( 101>>( (2)*2 ) )&3 --> 101>>4 & 3 = 3 -->turn left
++state[ant]= 3: ( 101>>( (3)*2 ) )&3 --> 101>>6 & 3 = 1

Maximum six-shifting + one-multiplication + one-"and" may be better.
Dont forget constant can be auto-promoted so you may add some suffixes or something else.

由于您对 %4 模数使用“unsigned int”,因此您可以使用“and”运算。

  state[ant]=state[ant]&3; instead of state[ant]=state[ant]%4;

对于不熟练的编译器,这应该会提高速度。

最难的部分:modulo-3

  C = A % B is equivalent to C = A – B * (A / B)
We need state[ant]%3
Result = state[ant] - 3 * (state[ant]/3)

state[ant]/3 is always <=1 for your valid direction states.
Only when state[ant] is 3 then state[ant]/3 is 1, other values give 0.
When multiplied by 3, that part is 0 or 3 (only 3 when state[ant] is 3 otherwise 0)
Result = state[ant] - (0 or 3)

Lets look at all possibilities:

state[ant]=0: 0 - 0 ---> 0 ----> 00100100 shifted by 0 times &3 --> 00000000
state[ant]=1: 1 - 0 ---> 1 ----> 00100100 shifted by 2 times &3 --> 00000001
state[ant]=2: 2 - 0 ---> 2 ----> 00100100 shifted by 4 times &3 --> 00000010
state[ant]=3: 3 - 3 ---> 0 ----> 00100100 shifted by 6 times &3 --> 00000000

00100100 is 36 in decimal.

(36 >> (state[ant] *2) ) & 3 will give you state[ant]%3 for your valid states (0,1,2,3)

Example:

state[ant]=0: 36 >> 0 --> 36 ----> 36& 3 ----> 0 satisfies 0%3
state[ant]=1: 36 >> 2 --> 9 -----> 9 & 3 ----> 1 satisfies 1%3
state[ant]=2: 36 >> 4 --> 2 -----> 2 & 3 ----> 2 satisfies 2%3
state[ant]=3: 36 >> 6 --> 0 -----> 0 & 3 ----> 0 satisfies 3%3

关于c - 如何优化这个 Langton's ant sim?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/17599613/

29 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com