- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
问题:
我有一个大约为 [350000, 1] 的向量,我希望计算成对距离。这导致 [350000, 350000] 整数数据类型的矩阵不适合 RAM。我最终想得到一个 bool 值(适合 RAM),所以我目前一次只做一个元素,但这不是很节省时间。
编辑:由于数据的大小,标准 sklearn 和 scipy 函数不起作用 - 但如果我可以以某种方式将其分块以使用硬盘,那么我应该能够使用这些。
问题可视化:
[a_1, a_2, a_3]^t -> [[a_1 - a_1, a_1 - a_2, a_1 - a_3], [a_2 - a_1, a_2 - a_2, a_2 - a_3], [a_3 - a_1, a_3 - a_2, a_3 - a_3]]
请注意,取绝对值时,只需要计算上三角形,因为它是对称的。
需要分块或替代解决方案的矢量化代码:
我找到了一种方法来计算使用广播在小矩阵上工作的所有点之间的距离(减法),但需要一种方法来在不达到 RAM 限制的情况下在更大的矩阵上执行此操作。
或者也许可以建议更好的方法来更快地访问下面的 MWE?
distMatrix = np.absolute((points[np.newaxis, :, :] - points[:, np.newaxis, :])[:, :, 0])
## Data ##
#Note that the datatype and code may not match up exactly as just creating to demonstrate. Essentially want to take first column and create distance matrix with itself through subtracting, and then take 2nd and 3rd column and create euclidean distance matrix.
data = np.random.randint(1, 5, size=[350001,3])
minTime = 3
maxTime = 4
minDist = 1
maxDist = 2
### CODE ###
n = len(data)
for i in trange(n):
for j in range(i+1, n):
#Within time threshold?
if minTime <= (data[j][idxT] - data[i][idxT]) <= maxTime:
#Within distance threshold?
xD = math.pow(data[j][idxX] - data[i][idxX], 2)
yD = math.pow(data[j][idxY] - data[i][idxY], 2)
d = math.sqrt(xD + yD)
#If within threshold then
if minDist <= d <= maxDist:
#DO SOMETHING
最佳答案
您可以将数组拆分为较小的数组,并分别计算每对的距离。
splits = np.array_split(data, 10)
for i in range(len(splits)):
for j in range(i, len(splits)):
m = scipy.spatial.distance.cdist(splits[i], splits[j])
# do something with m
import numpy as np
import scipy.spatial.distance
boolean = np.zeros((350, 350), dtype=np.bool_)
a = np.random.randn(350, 2)
splits = np.array_split(a, 10)
shift = splits[0].shape[0]
minDist = -0.5
maxDist = +0.5
for i in range(len(splits)):
for j in range(i, len(splits)):
m = scipy.spatial.distance.cdist(splits[i], splits[j])
masked = (minDist <= m) & (m <= maxDist)
boolean[i * shift: (i + 1) * shift, j * shift : (j + 1) * shift] = masked
boolean[j * shift : (j + 1) * shift, i * shift: (i + 1) * shift] = masked.T
关于python - 大型 NumPy 数组的成对距离(分块?),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/61970419/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!