gpt4 book ai didi

readxl,单个 .xlsx 工作簿中的选定工作表

转载 作者:行者123 更新时间:2023-12-03 16:46:50 25 4
gpt4 key购买 nike

如何简洁地导入选定的工作表,最好使用 ,来自 .xlsx 工作簿?
使用下面的代码(方法 # 1),我可以在单个 .xlsx 工作簿中导入所有工作表,但是我如何filter()select() ?第二位代码,带有 map_dfr() ,第 2 种方法更简洁,但使用该方法 sheet vector 失去了它的名字,变成了 1, 2, ctc。
假设我只想导入工作表 irismtcars

sh_to_impt <- c('iris', 'mtcars')
需要的包裹,
library(readxl)
library(tidyverse)
library(purrr)
代码方法#1,
path <- readxl_example("datasets.xlsx")
datasets_data <- readxl::excel_sheets(path = path) %>%
purrr::set_names() %>% select(mtcars) %>%
purrr::map_dfr(
~ readxl::read_excel(path = path, sheet = .x)
, .id = "sheet"
)

datasets_data
# A tibble: 1,253 x 24
sheet Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 iris 5.1 3.5 1.4 0.2 setosa
2 iris 4.9 3 1.4 0.2 setosa
3 iris 4.7 3.2 1.3 0.2 setosa
4 iris 4.6 3.1 1.5 0.2 setosa
5 iris 5 3.6 1.4 0.2 setosa
6 iris 5.4 3.9 1.7 0.4 setosa
7 iris 4.6 3.4 1.4 0.3 setosa
8 iris 5 3.4 1.5 0.2 setosa
9 iris 4.4 2.9 1.4 0.2 setosa
10 iris 4.9 3.1 1.5 0.1 setosa
# ... with 1,243 more rows, and 18 more variables: mpg <dbl>,
# cyl <dbl>, disp <dbl>, hp <dbl>, drat <dbl>, wt <dbl>,
# qsec <dbl>, vs <dbl>, am <dbl>, gear <dbl>, carb <dbl>,
# weight <dbl>, feed <chr>, lat <dbl>, long <dbl>, depth <dbl>,
# mag <dbl>, stations <dbl>
我可以像这样绕过它,但是 sheet vector 失去了它的名字,变成了 1, 2, ctc。
代码方法#2,
map_dfr(sh_to_impt, ~ read_excel(path, sheet = .x), .id = "sheet")
# A tibble: 182 x 17
sheet Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 1 5.1 3.5 1.4 0.2 setosa
2 1 4.9 3 1.4 0.2 setosa
3 1 4.7 3.2 1.3 0.2 setosa
4 1 4.6 3.1 1.5 0.2 setosa
5 1 5 3.6 1.4 0.2 setosa
6 1 5.4 3.9 1.7 0.4 setosa
7 1 4.6 3.4 1.4 0.3 setosa
8 1 5 3.4 1.5 0.2 setosa
9 1 4.4 2.9 1.4 0.2 setosa
10 1 4.9 3.1 1.5 0.1 setosa
# ... with 172 more rows, and 11 more variables: mpg <dbl>,
# cyl <dbl>, disp <dbl>, hp <dbl>, drat <dbl>, wt <dbl>,
# qsec <dbl>, vs <dbl>, am <dbl>, gear <dbl>, carb <dbl>
我看过 this answer ,认为它可能是关键。
我正在寻找一个简洁的解决方案。 A,对我来说,显然不那么简洁的解决方案可能是,
map_dfr(sh_to_impt, ~ read_excel(path, sheet = .x), .id = "sheet") %>% 
mutate(sheet = recode(sheet, `1` = sh_to_impt[1], `2` = sh_to_impt[2]))
# A tibble: 182 x 17
sheet Sepal.Length Sepal.Width Petal.Length Petal.Width Species mpg
<chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 iris 5.1 3.5 1.4 0.2 setosa NA
2 iris 4.9 3 1.4 0.2 setosa NA
3 iris 4.7 3.2 1.3 0.2 setosa NA
4 iris 4.6 3.1 1.5 0.2 setosa NA
5 iris 5 3.6 1.4 0.2 setosa NA
6 iris 5.4 3.9 1.7 0.4 setosa NA
7 iris 4.6 3.4 1.4 0.3 setosa NA
8 iris 5 3.4 1.5 0.2 setosa NA
9 iris 4.4 2.9 1.4 0.2 setosa NA
10 iris 4.9 3.1 1.5 0.1 setosa NA
# ... with 172 more rows, and 10 more variables: cyl <dbl>, disp <dbl>,
# hp <dbl>, drat <dbl>, wt <dbl>, qsec <dbl>, vs <dbl>, am <dbl>,
# gear <dbl>, carb <dbl>

最佳答案

在 R 中表示 Excel 工作簿的“整洁”方式是作为嵌套数据框,例如:

# A tibble: 2 x 2                                                                                        
sheet data
<chr> <list>
1 iris <tibble [150 × 5]>
2 mtcars <tibble [32 × 11]>
因此,我将通过将工作表名称存储在列中,将数据作为附加列读取,然后取消嵌套来简化您的第一种方法:
library("readxl")
library("dplyr")
library("purrr")
library("tidyr")

path <- readxl_example("datasets.xlsx")
sh_to_impt <- c("iris", "mtcars")

tibble(sheet = sh_to_impt) %>%
mutate(data = map(sheet, ~read_xlsx(path, .))) %>%
unnest(data)
#> # A tibble: 182 x 17
#> sheet Sepal.Length Sepal.Width Petal.Length Petal.Width Species mpg cyl
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 iris 5.1 3.5 1.4 0.2 setosa NA NA
#> 2 iris 4.9 3 1.4 0.2 setosa NA NA
#> 3 iris 4.7 3.2 1.3 0.2 setosa NA NA
#> 4 iris 4.6 3.1 1.5 0.2 setosa NA NA
#> 5 iris 5 3.6 1.4 0.2 setosa NA NA
#> 6 iris 5.4 3.9 1.7 0.4 setosa NA NA
#> 7 iris 4.6 3.4 1.4 0.3 setosa NA NA
#> 8 iris 5 3.4 1.5 0.2 setosa NA NA
#> 9 iris 4.4 2.9 1.4 0.2 setosa NA NA
#> 10 iris 4.9 3.1 1.5 0.1 setosa NA NA
#> # … with 172 more rows, and 9 more variables: disp <dbl>, hp <dbl>, drat <dbl>,
#> # wt <dbl>, qsec <dbl>, vs <dbl>, am <dbl>, gear <dbl>, carb <dbl>
如果您事先不知道您想要的工作表,或者想要为不同的分析使用不同的子集,您也可以导入所有这些并在取消嵌套之前进行过滤:
tibble(sheet = excel_sheets(path)) %>% 
mutate(data = map(sheet, ~read_xlsx(path, .))) %>%
filter(sheet %in% sh_to_impt) %>%
unnest(data)
#> # A tibble: 182 x 17
#> sheet Sepal.Length Sepal.Width Petal.Length Petal.Width Species mpg cyl
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 iris 5.1 3.5 1.4 0.2 setosa NA NA
#> 2 iris 4.9 3 1.4 0.2 setosa NA NA
#> 3 iris 4.7 3.2 1.3 0.2 setosa NA NA
#> 4 iris 4.6 3.1 1.5 0.2 setosa NA NA
#> 5 iris 5 3.6 1.4 0.2 setosa NA NA
#> 6 iris 5.4 3.9 1.7 0.4 setosa NA NA
#> 7 iris 4.6 3.4 1.4 0.3 setosa NA NA
#> 8 iris 5 3.4 1.5 0.2 setosa NA NA
#> 9 iris 4.4 2.9 1.4 0.2 setosa NA NA
#> 10 iris 4.9 3.1 1.5 0.1 setosa NA NA
#> # … with 172 more rows, and 9 more variables: disp <dbl>, hp <dbl>, drat <dbl>,
#> # wt <dbl>, qsec <dbl>, vs <dbl>, am <dbl>, gear <dbl>, carb <dbl>

关于readxl,单个 .xlsx 工作簿中的选定工作表,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66063453/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com