- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我在使用 Keras CNN (VGGNet) 模型执行预测时遇到问题。这是一个多类分类,将 96x96x3 图像张量作为输入,产生大小为 114(类)的概率向量。它被 Google ML Engine 接受为有效模型并且预测输入 image.json 的格式正确(一行带有张量),但是调用 gcloud ml-engine predict 会出现以下错误:
"error": "Prediction failed: Error during model execution: AbortionError(code=StatusCode.INVALID_ARGUMENT, details=\"You must feed a value for placeholder tensor 'Placeholder_1' with dtype float and shape [?,114]\n\t [[Node: Placeholder_1 = Placeholderdtype=DT_FLOAT, shape=[?,114], _device=\"/job:localhost/replica:0/task:0/device:CPU:0\"]]\")"
我的预测输入 image.json
包含
{"x": [ [ [ [ 1.0, 1.0, 1.0 ], ..., [ 1.0, 1.0, 1.0 ] ] ] ]}
生成save_model.pb文件的代码是
def build_graph(x):
model = load_model("my-model.model")
labels = pickle.loads(open("labels.pickle", "rb").read())
# classify the input image
probabilities = model.predict(x)
outputs = tf.convert_to_tensor(probabilities)
saver = tf.train.Saver()
return outputs, saver
image_path = "testset/testimage.png"
# preprocess the image for classification
image = cv2.imread(image_path)
image = cv2.resize(image, (96, 96))
image = image.astype("float") / 255.0
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
# Do training
with tf.Graph().as_default() as prediction_graph:
x = image
outputs = tf.placeholder(tf.float32, shape=[None, 114])
outputs, saver = build_graph(x)
with tf.Session(graph=prediction_graph) as sess:
sess.run([tf.local_variables_initializer(), tf.tables_initializer()])
x = tf.placeholder(tf.float32, shape=[None, 96, 96, 3])
sess.run(outputs, {x: image})
# export model
export_dir = "export3"
tf.saved_model.simple_save(
sess,
export_dir,
inputs={"x": tf.placeholder(tf.float32, shape=[None, 96, 96, 3])},
outputs={"y": tf.placeholder(tf.float32, shape=[None, 114])}
)
我在这里错过了什么?有没有更简单的工作方式?该模型还可以作为由
生成的 .json 和 .h5 文件提供# serialize model to JSON
model_json = model.to_json()
with open("my-model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("my-model.h5")
感谢您的帮助!
最佳答案
不知何故, [None, 114] 的预期输出形状没有实现。
我知道在 expand_dims 之后,图像的形状是 [1,96,96]。但是由于我不知道你的模型中有什么,所以我不知道你如何获得大小为 114 的概率向量。
考虑到之前的说明,一个模糊的建议是检查您是否在模型中使用 tf.Variable 类,以及您是否没有正确更改形状;因为 tf.Variable 限制了您在创建变量后更改其形状的能力。
如果不是这种情况,请提供有关您的模型的更多详细信息。
关于tensorflow - 在 Google ML Engine 上以 .model .json 和 .h5 的形式部署 Keras/Tensorflow CNN 的最简单方法是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51027081/
我想将模型及其各自训练的权重从 tensorflow.js 转换为标准 tensorflow,但无法弄清楚如何做到这一点,tensorflow.js 的文档对此没有任何说明 我有一个 manifest
我有一个运行良好的 TF 模型,它是用 Python 和 TFlearn 构建的。有没有办法在另一个系统上运行这个模型而不安装 Tensorflow?它已经经过预训练,所以我只需要通过它运行数据。 我
当执行 tensorflow_model_server 二进制文件时,它需要一个模型名称命令行参数,model_name。 如何在训练期间指定模型名称,以便在运行 tensorflow_model_s
我一直在 R 中使用标准包进行生存分析。我知道如何在 TensorFlow 中处理分类问题,例如逻辑回归,但我很难将其映射到生存分析问题。在某种程度上,您有两个输出向量而不是一个输出向量(time_t
Torch7 has a library for generating Gaussian Kernels在一个固定的支持。 Tensorflow 中有什么可比的吗?我看到 these distribu
在Keras中我们可以简单的添加回调,如下所示: self.model.fit(X_train,y_train,callbacks=[Custom_callback]) 回调在doc中定义,但我找不到
我正在寻找一种在 tensorflow 中有条件打印节点的方法,使用下面的示例代码行,其中每 10 个循环计数,它应该在控制台中打印一些东西。但这对我不起作用。谁能建议? 谢谢,哈米德雷萨, epsi
我想使用 tensorflow object detection API 创建我自己的 .tfrecord 文件,并将它们用于训练。该记录将是原始数据集的子集,因此模型将仅检测特定类别。我不明白也无法
我在 TensorFlow 中训练了一个聊天机器人,想保存模型以便使用 TensorFlow.js 将其部署到 Web。我有以下内容 checkpoint = "./chatbot_weights.c
我最近开始学习 Tensorflow,特别是我想使用卷积神经网络进行图像分类。我一直在看官方仓库中的android demo,特别是这个例子:https://github.com/tensorflow
我目前正在研究单图像超分辨率,并且我设法卡住了现有的检查点文件并将其转换为 tensorflow lite。但是,使用 .tflite 文件执行推理时,对一张图像进行上采样所需的时间至少是使用 .ck
我注意到 tensorflow 的 api 中已经有批量标准化函数。我不明白的一件事是如何更改训练和测试之间的程序? 批量归一化在测试和训练期间的作用不同。具体来说,在训练期间使用固定的均值和方差。
我创建了一个模型,该模型将 Mobilenet V2 应用于 Google colab 中的卷积基础层。然后我使用这个命令转换它: path_to_h5 = working_dir + '/Tenso
代码取自:- http://adventuresinmachinelearning.com/python-tensorflow-tutorial/ import tensorflow as tf fr
好了,所以我准备在Tensorflow中运行 tf.nn.softmax_cross_entropy_with_logits() 函数。 据我了解,“logit”应该是概率的张量,每个对应于某个像素的
tensorflow 服务构建依赖于大型 tensorflow ;但我已经成功构建了 tensorflow。所以我想用它。我做这些事情:我更改了 tensorflow 服务 WORKSPACE(org
Tensoflow 嵌入层 ( https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding ) 易于使用, 并且有大量的文
我正在尝试使用非常大的数据集(比我的内存大得多)训练 Tensorflow 模型。 为了充分利用所有可用的训练数据,我正在考虑将它们分成几个小的“分片”,并一次在一个分片上进行训练。 经过一番研究,我
根据 Sutton 的书 - Reinforcement Learning: An Introduction,网络权重的更新方程为: 其中 et 是资格轨迹。 这类似于带有额外 et 的梯度下降更新。
如何根据条件选择执行图表的一部分? 我的网络有一部分只有在 feed_dict 中提供占位符值时才会执行.如果未提供该值,则采用备用路径。我该如何使用 tensorflow 来实现它? 以下是我的代码
我是一名优秀的程序员,十分优秀!