- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我刚开始使用 Spark SQL + Cassandra,可能遗漏了一些重要的东西,但一个简单的查询需要大约 45 秒。我正在使用 cassanda-spark-connector
库,并运行也托管 Spark 的本地 Web 服务器。所以我的设置大致是这样的:
在 sbt:
"org.apache.spark" %% "spark-core" % "1.4.1" excludeAll(ExclusionRule(organization = "org.slf4j")),
"org.apache.spark" %% "spark-sql" % "1.4.1" excludeAll(ExclusionRule(organization = "org.slf4j")),
"com.datastax.spark" %% "spark-cassandra-connector" % "1.4.0-M3" excludeAll(ExclusionRule(organization = "org.slf4j"))
SparkContext
的单例和
CassandraSQLContetx
.然后从 servlet 调用它。下面是单例代码的样子:
object SparkModel {
val conf =
new SparkConf()
.setAppName("core")
.setMaster("local")
.set("spark.cassandra.connection.host", "127.0.0.1")
val sc = new SparkContext(conf)
val sqlC = new CassandraSQLContext(sc)
sqlC.setKeyspace("core")
val df: DataFrame = sqlC.cassandraSql(
"SELECT email, target_entity_id, target_entity_type " +
"FROM tracking_events " +
"LEFT JOIN customers " +
"WHERE entity_type = 'User' AND entity_id = customer_id")
}
get("/spark") {
SparkModel.df.collect().map(r => TrackingEvent(r.getString(0), r.getString(1), r.getString(2))).toList
}
12:48:50 INFO org.apache.spark.SparkContext - Starting job: collect at V1Servlet.scala:1146
12:48:50 INFO o.a.spark.scheduler.DAGScheduler - Got job 1 (collect at V1Servlet.scala:1146) with 1 output partitions (allowLocal=false)
12:48:50 INFO o.a.spark.scheduler.DAGScheduler - Final stage: ResultStage 1(collect at V1Servlet.scala:1146)
12:48:50 INFO o.a.spark.scheduler.DAGScheduler - Parents of final stage: List()
12:48:50 INFO o.a.spark.scheduler.DAGScheduler - Missing parents: List()
12:48:50 INFO o.a.spark.scheduler.DAGScheduler - Submitting ResultStage 1 (MapPartitionsRDD[29] at collect at V1Servlet.scala:1146), which has no missing parents
12:48:50 INFO org.apache.spark.storage.MemoryStore - ensureFreeSpace(18696) called with curMem=26661, maxMem=825564856
12:48:50 INFO org.apache.spark.storage.MemoryStore - Block broadcast_1 stored as values in memory (estimated size 18.3 KB, free 787.3 MB)
12:48:50 INFO org.apache.spark.storage.MemoryStore - ensureFreeSpace(8345) called with curMem=45357, maxMem=825564856
12:48:50 INFO org.apache.spark.storage.MemoryStore - Block broadcast_1_piece0 stored as bytes in memory (estimated size 8.1 KB, free 787.3 MB)
12:48:50 INFO o.a.spark.storage.BlockManagerInfo - Added broadcast_1_piece0 in memory on localhost:56289 (size: 8.1 KB, free: 787.3 MB)
12:48:50 INFO org.apache.spark.SparkContext - Created broadcast 1 from broadcast at DAGScheduler.scala:874
12:48:50 INFO o.a.spark.scheduler.DAGScheduler - Submitting 1 missing tasks from ResultStage 1 (MapPartitionsRDD[29] at collect at V1Servlet.scala:1146)
12:48:50 INFO o.a.s.scheduler.TaskSchedulerImpl - Adding task set 1.0 with 1 tasks
12:48:50 INFO o.a.spark.scheduler.TaskSetManager - Starting task 0.0 in stage 1.0 (TID 1, localhost, NODE_LOCAL, 59413 bytes)
12:48:50 INFO org.apache.spark.executor.Executor - Running task 0.0 in stage 1.0 (TID 1)
12:48:50 INFO com.datastax.driver.core.Cluster - New Cassandra host localhost/127.0.0.1:9042 added
12:48:50 INFO c.d.s.c.cql.CassandraConnector - Connected to Cassandra cluster: Super Cluster
12:49:11 INFO o.a.spark.storage.BlockManagerInfo - Removed broadcast_0_piece0 on localhost:56289 in memory (size: 8.0 KB, free: 787.3 MB)
12:49:35 INFO org.apache.spark.executor.Executor - Finished task 0.0 in stage 1.0 (TID 1). 6124 bytes result sent to driver
12:49:35 INFO o.a.spark.scheduler.TaskSetManager - Finished task 0.0 in stage 1.0 (TID 1) in 45199 ms on localhost (1/1)
12:49:35 INFO o.a.s.scheduler.TaskSchedulerImpl - Removed TaskSet 1.0, whose tasks have all completed, from pool
12:49:35 INFO o.a.spark.scheduler.DAGScheduler - ResultStage 1 (collect at V1Servlet.scala:1146) finished in 45.199 s
12:48:50 INFO c.d.s.c.cql.CassandraConnector - Connected to Cassandra cluster: Super Cluster
12:49:11 INFO o.a.spark.storage.BlockManagerInfo - Removed broadcast_0_piece0 on localhost:56289 in memory (size: 8.0 KB, free: 787.3 MB)
12:49:35 INFO org.apache.spark.executor.Executor - Finished task 0.0 in stage 1.0 (TID 1). 6124 bytes result sent to driver
tracking_events
为 ~200 个条目,
customers
为 ~20 个条目),因此将它们整体读入内存不应该花费任何大量时间。它是本地 Cassandra 安装,不涉及集群,不涉及网络。
最佳答案
"SELECT email, target_entity_id, target_entity_type " +
"FROM tracking_events " +
"LEFT JOIN customers " +
"WHERE entity_type = 'User' AND entity_id = customer_id")
spark.cassandra.input.split.size_in_mb approx amount of data to be fetched into a Spark partition 64 MB
spark.cassandra.input.fetch.size_in_rows number of CQL rows fetched per driver request 1000
关于scala - Spark SQL + Cassandra : bad performance,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32051648/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!