- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我开始使用 tensorflow 编写神经元网络,并且在我的每个示例项目中似乎都面临一个问题。
我的损失总是从 50 或更高开始,并且不会减少,或者如果减少,它的速度非常慢,以至于在我所有的时代之后,我什至没有接近可接受的损失率。
它已经尝试过的东西 (并没有对结果产生太大影响)
names=["Maria","Paul","Emilia",...]
genders=["f","m","f",...]
names=[[77.,97. ,114.,105.,97. ,0. ,0.,...]
[80.,97. ,117.,108.,0. ,0. ,0.,...]
[69.,109.,105.,108.,105.,97.,0.,...]]
genders=[[1.,0.]
[0.,1.]
[1.,0.]]
# Input Layer
x = tf.placeholder(tf.float32, shape=[None, 30])
y_ = tf.placeholder(tf.float32, shape=[None, 2])
# Hidden Layers
# H1
W1 = tf.Variable(tf.truncated_normal([30, 20], stddev=0.1))
b1 = tf.Variable(tf.zeros([20]))
y1 = tf.nn.relu(tf.matmul(x, W1) + b1)
# H2
W2 = tf.Variable(tf.truncated_normal([20, 10], stddev=0.1))
b2 = tf.Variable(tf.zeros([10]))
y2 = tf.nn.relu(tf.matmul(y1, W2) + b2)
# H3
W3 = tf.Variable(tf.truncated_normal([10, 10], stddev=0.1))
b3 = tf.Variable(tf.zeros([10]))
y3 = tf.nn.relu(tf.matmul(y2, W3) + b3)
# Output Layer
W = tf.Variable(tf.truncated_normal([10, 2], stddev=0.1))
b = tf.Variable(tf.zeros([2]))
y = tf.nn.softmax(tf.matmul(y3, W) + b)
# Loss
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
# Accuracy
is_correct = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
# Training
train_operation = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(150):
bs = 100
index = i*bs
inputBatch = inputData[index:index+bs]
outputBatch = outputData[index:index+bs]
sess.run(train_operation, feed_dict={x: inputBatch, y_: outputBatch})
accuracyTrain, lossTrain = sess.run([accuracy, cross_entropy], feed_dict={x: inputBatch, y_: outputBatch})
if i%(bs/10) == 0:
print("step %d loss %.2f accuracy %.2f" % (i, lossTrain, accuracyTrain))
step 0 loss 68.96 accuracy 0.55
step 10 loss 69.32 accuracy 0.50
step 20 loss 69.31 accuracy 0.50
step 30 loss 69.31 accuracy 0.50
step 40 loss 69.29 accuracy 0.51
step 50 loss 69.90 accuracy 0.53
step 60 loss 68.92 accuracy 0.55
step 70 loss 68.99 accuracy 0.55
step 80 loss 69.49 accuracy 0.49
step 90 loss 69.25 accuracy 0.52
step 100 loss 69.39 accuracy 0.49
step 110 loss 69.32 accuracy 0.47
step 120 loss 67.17 accuracy 0.61
step 130 loss 69.34 accuracy 0.50
step 140 loss 69.33 accuracy 0.47
最佳答案
0.69 nats 没什么问题每个样本的熵,作为二元分类的起点。
如果转换为基数 2,0.69/log(2)
,您会看到每个样本几乎正好是 1 位,这正是您不确定二进制分类时所期望的。
我通常使用平均损失而不是总和,所以事情对批量大小不太敏感。
您也不应该直接自己计算熵,因为该方法很容易失效。您可能想要 tf.nn.sigmoid_cross_entropy_with_logits
.
我也喜欢从 Adam Optimizer 开始而不是纯梯度下降。
以下是您可能遇到此问题的两个原因:
1)字符代码是有顺序的,但是顺序不代表什么。如果您的输入作为单热向量输入,网络将更容易将其作为输入。所以你的输入将是一个 26x30 = 780 的元素向量。否则,网络必须浪费大量容量来学习字母之间的边界。
2)您只有完全连接的层。这使得它无法独立于名称中的绝对位置来了解事实。 2015 年排名前 10 的女孩名字中有 6 个以“a”结尾,而排名前 10 的男孩名字中有 0 个以“a”结尾。正如目前所写,您的网络需要为每个名字长度独立地重新学习“通常它是一个女孩的名字,如果它以‘a’结尾”。使用一些卷积层将允许它在所有名称长度上学习一次事实。
关于Tensorflow - 损失开始很高并且不会减少,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41259555/
我是pytorch的新手。请问添加'loss.item()'有什么区别?以下2部分代码: for epoch in range(epochs): trainingloss =0 for
我有一个包含 4 列的 MySQL 表,如下所示。 TransactionID | Item | Amount | Date ------------------------------------
我目前正在使用 cocos2d、Box2D 和 Objective-C 为 iPad 和 iPhone 制作游戏。 每次更新都会发生很多事情,很多事情必须解决。 我最近将我的很多代码重构为几个小方法,
我一直在关注 Mixed Precision Guide .因此,我正在设置: keras.mixed_precision.set_global_policy(mixed_precision) 像这样
double lnumber = Math.pow(2, 1000); 打印 1.0715086071862673E301 我尝试过的事情 我尝试使用 BigDecimal 类来扩展这个数字: St
我正在尝试创建一个神经网络来近似函数(正弦、余弦、自定义...),但我在格式上遇到困难,我不想使用输入标签,而是使用输入输出。我该如何更改它? 我正在关注this tutorial import te
我有一个具有 260,000 行和 35 列的“单热编码”(全一和零)数据矩阵。我正在使用 Keras 训练一个简单的神经网络来预测一个连续变量。制作网络的代码如下: model = Sequenti
什么是像素级 softmax 损失?在我的理解中,这只是一个交叉熵损失,但我没有找到公式。有人能帮我吗?最好有pytorch代码。 最佳答案 您可以阅读 here所有相关内容(那里还有一个指向源代码的
我正在训练一个 CNN 架构来使用 PyTorch 解决回归问题,其中我的输出是一个 20 个值的张量。我计划使用 RMSE 作为模型的损失函数,并尝试使用 PyTorch 的 nn.MSELoss(
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我正在使用 Keras 2.0.2 功能 API (Tensorflow 1.0.1) 来实现一个网络,该网络接受多个输入并产生两个输出 a 和 b。我需要使用 cosine_proximity 损失
我正在尝试设置很少层的神经网络,这将解决简单的回归问题,这应该是f(x) = 0,1x 或 f(x) = 10x 所有代码如下所示(数据生成和神经网络) 4 个带有 ReLu 的全连接层 损失函数 R
我正在研究在 PyTorch 中使用带有梯度惩罚的 Wasserstein GAN,但始终得到大的、正的生成器损失,并且随着时间的推移而增加。 我从 Caogang's implementation
我正在尝试在 TensorFlow 中实现最大利润损失。这个想法是我有一些积极的例子,我对一些消极的例子进行了采样,并想计算类似的东西 其中 B 是我的批处理大小,N 是我要使用的负样本数。 我是 t
我正在尝试预测一个连续值(第一次使用神经网络)。我已经标准化了输入数据。我不明白为什么我会收到 loss: nan从第一个纪元开始的输出。 我阅读并尝试了以前对同一问题的回答中的许多建议,但没有一个对
我目前正在学习神经网络,并尝试训练 MLP 以使用 Python 中的反向传播来学习 XOR。该网络有两个隐藏层(使用 Sigmoid 激活)和一个输出层(也是 Sigmoid)。 网络(大约 20,
尝试在 keras 中自定义损失函数(平滑 L1 损失),如下所示 ValueError: Shape must be rank 0 but is rank 5 for 'cond/Switch' (
我试图在 tensorflow 中为门牌号图像创建一个卷积神经网络 http://ufldl.stanford.edu/housenumbers/ 当我运行我的代码时,我在第一步中得到了 nan 的成
我正在尝试使用我在 Keras 示例( https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder
我试图了解 CTC 损失如何用于语音识别以及如何在 Keras 中实现它。 我认为我理解的内容(如果我错了,请纠正我!)总体而言,CTC 损失被添加到经典网络之上,以便逐个元素(对于文本或语音而言逐个
我是一名优秀的程序员,十分优秀!