- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经按年执行了一个简单的分组操作,并进行了一些聚合,如下所示。我尝试将结果附加到 hdfs 路径,如下所示。我收到错误消息,
org.apache.spark.sql.AnalysisException: Append output mode not supported
when there are streaming aggregations on streaming DataFrames/DataSets
without watermark;;
Aggregate [year#88], [year#88, sum(rating#89) AS rating#173,
sum(cast(duration#90 as bigint)) AS duration#175L]
+- EventTimeWatermark event_time#96: timestamp, interval 10 seconds
val spark =SparkSession.builder().appName("mddd").
enableHiveSupport().config("hive.exec.dynamic.partition", "true").
config("hive.exec.dynamic.partition.mode", "nonstrict").
config("spark.sql.streaming.checkpointLocation", "/user/sa/sparkCheckpoint").
config("spark.debug.maxToStringFields",100).
getOrCreate()
val mySchema = StructType(Array(
StructField("id", IntegerType),
StructField("name", StringType),
StructField("year", IntegerType),
StructField("rating", DoubleType),
StructField("duration", IntegerType)
))
val xmlData = spark.readStream.option("sep", ",").schema(mySchema).csv("file:///home/sa/kafdata/")
import java.util.Calendar
val df_agg_without_time= xmlData.withColumn("event_time", to_utc_timestamp(current_timestamp, Calendar.getInstance().getTimeZone().getID()))
val df_agg_with_time = df_agg_without_time.withWatermark("event_time", "10 seconds").groupBy($"year").agg(sum($"rating").as("rating"),sum($"duration").as("duration"))
val cop = df_agg_with_time.withColumn("column_name_with", to_json(struct($"window")))
df_agg_with_time.writeStream.outputMode("append").partitionBy("year").format("csv").
option("path", "hdfs://dio/apps/hive/warehouse/gt.db/sample_mov/").start()
id,name,year,rating,duration
1,The Nightmare Before Christmas,1993,3.9,4568
2,The Mummy,1993,3.5,4388
3,Orphans of the Storm,1921,3.2,9062
4,The Object of Beauty,1921,2.8,6150
5,Night Tide,1963,2.8,5126
6,One Magic Christmas,1963,3.8,5333
7,Muriel's Wedding,1963,3.5,6323
8,Mother's Boys,1963,3.4,5733
year,rating,duration
1993,7.4,8956
1921,6.0,15212
1963,10.7,17389
最佳答案
这是一个多方面的问题:
For example, df.withWatermark("time", "1 min").groupBy("time2").count() is invalid in Append output mode, as watermark is defined on a different column from the aggregation column. Simply stated, for Append you need WaterMark. I think you have an issue here.
.enableHiveSupport().config("hive.exec.dynamic.partition", "true")
.config("hive.exec.dynamic.partition.mode", "nonstrict")
import java.sql.Timestamp
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.OutputMode
val sparkSession = SparkSession.builder
.master("local")
.appName("example")
.getOrCreate()
//create stream from socket
import sparkSession.implicits._
sparkSession.sparkContext.setLogLevel("ERROR")
val socketStreamDs = sparkSession.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load()
.as[String]
val stockDs = socketStreamDs.map(value => (value.trim.split(","))).map(entries=>(new java.sql.Timestamp(entries(0).toLong),entries(1),entries(2).toDouble)).toDF("time","symbol","value")//.toDS()
val windowedCount = stockDs
.withWatermark("time", "20000 milliseconds")
.groupBy(
window($"time", "10 seconds"),
$"symbol"
)
.agg(sum("value"), count($"symbol"))
val query =
windowedCount.writeStream
.format("console")
.option("truncate", "false")
.outputMode(OutputMode.Append())
query.start().awaitTermination()
Batch: 14
----------------------------------------------+------+----------+-------------+
|window |symbol|sum(value)|count(symbol)|
+---------------------------------------------+------+----------+-------------+
|[2016-04-27 04:34:20.0,2016-04-27 04:34:30.0]|"aap1"|4200.0 |6 |
|[2016-04-27 04:34:30.0,2016-04-27 04:34:40.0]|"app1"|800.0 |2 |
|[2016-04-27 04:34:20.0,2016-04-27 04:34:30.0]|"aap2"|2500.0 |1 |
|[2016-04-27 04:34:40.0,2016-04-27 04:34:50.0]|"app1"|2800.0 |4 |
+---------------------------------------------+------+----------+-------------+
关于apache-spark - spark结构化流异常: Append output mode not supported without watermark,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54117961/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!