gpt4 book ai didi

apache-spark - spark结构化流异常: Append output mode not supported without watermark

转载 作者:行者123 更新时间:2023-12-03 16:39:54 28 4
gpt4 key购买 nike

我已经按年执行了一个简单的分组操作,并进行了一些聚合,如下所示。我尝试将结果附加到 hdfs 路径,如下所示。我收到错误消息,

   org.apache.spark.sql.AnalysisException: Append output mode not supported 
when there are streaming aggregations on streaming DataFrames/DataSets
without watermark;;
Aggregate [year#88], [year#88, sum(rating#89) AS rating#173,
sum(cast(duration#90 as bigint)) AS duration#175L]
+- EventTimeWatermark event_time#96: timestamp, interval 10 seconds

下面是我的代码。有人可以帮忙吗
    val spark =SparkSession.builder().appName("mddd").
enableHiveSupport().config("hive.exec.dynamic.partition", "true").
config("hive.exec.dynamic.partition.mode", "nonstrict").
config("spark.sql.streaming.checkpointLocation", "/user/sa/sparkCheckpoint").
config("spark.debug.maxToStringFields",100).
getOrCreate()

val mySchema = StructType(Array(
StructField("id", IntegerType),
StructField("name", StringType),
StructField("year", IntegerType),
StructField("rating", DoubleType),
StructField("duration", IntegerType)
))

val xmlData = spark.readStream.option("sep", ",").schema(mySchema).csv("file:///home/sa/kafdata/")
import java.util.Calendar
val df_agg_without_time= xmlData.withColumn("event_time", to_utc_timestamp(current_timestamp, Calendar.getInstance().getTimeZone().getID()))

val df_agg_with_time = df_agg_without_time.withWatermark("event_time", "10 seconds").groupBy($"year").agg(sum($"rating").as("rating"),sum($"duration").as("duration"))
val cop = df_agg_with_time.withColumn("column_name_with", to_json(struct($"window")))

df_agg_with_time.writeStream.outputMode("append").partitionBy("year").format("csv").
option("path", "hdfs://dio/apps/hive/warehouse/gt.db/sample_mov/").start()

我的输入是 csv 格式
    id,name,year,rating,duration
1,The Nightmare Before Christmas,1993,3.9,4568
2,The Mummy,1993,3.5,4388
3,Orphans of the Storm,1921,3.2,9062
4,The Object of Beauty,1921,2.8,6150
5,Night Tide,1963,2.8,5126
6,One Magic Christmas,1963,3.8,5333
7,Muriel's Wedding,1963,3.5,6323
8,Mother's Boys,1963,3.4,5733

我的预期输出应该在 hdfs 中,并在一年中进行分区
    year,rating,duration
1993,7.4,8956
1921,6.0,15212
1963,10.7,17389

我真的不确定我的方法有什么问题。请帮忙

最佳答案

这是一个多方面的问题:

  • 结构化流 API 有限制恕我直言。
  • 可以通过管道传输多个查询并且从技术上讲它会运行,但不会产生任何输出,因此这样做没有任何值(value) - 即使您可以指定它,它也无法执行此类其他功能。
  • 手册指出:必须在与时间戳相同的列上调用 withWatermark
    聚合中使用的列。

    For example, df.withWatermark("time", "1 min").groupBy("time2").count() is invalid in Append output mode, as watermark is defined on a different column from the aggregation column. Simply stated, for Append you need WaterMark. I think you have an issue here.

  • 使用路径时以下内容是否相关?

  •   .enableHiveSupport().config("hive.exec.dynamic.partition", "true")
    .config("hive.exec.dynamic.partition.mode", "nonstrict")

  • 此外,您的最终用例是未知的。这里的问题是这是否是一个好方法,但我无法评估的洞察力太少,我们只是假设它是这样。
  • 我们假设同一部电影的评分将成为 future 微批处理的一部分。
  • 提要中缺少 event_time,但您自己创建。有点不切实际,但是我们可以忍受,尽管 TimeStamp 有点问题。
  • 我建议你看看这个博客 http://blog.madhukaraphatak.com/introduction-to-spark-structured-streaming-part-12/对结构化流媒体的出色评估。

  • 所以,一般来说:
  • 在 Complete、Append 和 Update 选项中,我认为您选择了正确的 Append。可以使用更新,但我将其排除在范围之外。
  • 但没有将 event_time 放在窗口中。你应该做这个。我在最后放了一个例子,在 Spark Shell 中运行,我无法让案例类工作 - 这就是为什么花了这么长时间,但在编译的程序中它不是问题,或者 DataBricks。
  • 从功能上讲,您不能编写多个查询来进行您尝试过的聚合。在我的情况下,它只会产生一些错误。
  • 我建议你使用我使用的时间戳方法,它更容易,因为我无法测试你所有的东西。

  • 然后:
  • 或者,将此模块的输出写入 KAFKA 主题并将该主题读入另一个模块,然后进行第二次聚合并写出,考虑到您可以在不同的微批处理中获得多个电影评级。
  • 或者,将包含计数字段的数据写出,然后提供一个 View 层用于查询,考虑到有多次写入的事实。

  • 这是一个使用套接字输入和 Spark Shell 的示例 - 您可以将其推断为您自己的数据和微批处理的输出(请注意,查看数据时存在延迟):
    import java.sql.Timestamp
    import org.apache.spark.sql.SparkSession
    import org.apache.spark.sql.functions._
    import org.apache.spark.sql.streaming.OutputMode

    val sparkSession = SparkSession.builder
    .master("local")
    .appName("example")
    .getOrCreate()
    //create stream from socket

    import sparkSession.implicits._
    sparkSession.sparkContext.setLogLevel("ERROR")
    val socketStreamDs = sparkSession.readStream
    .format("socket")
    .option("host", "localhost")
    .option("port", 9999)
    .load()
    .as[String]

    val stockDs = socketStreamDs.map(value => (value.trim.split(","))).map(entries=>(new java.sql.Timestamp(entries(0).toLong),entries(1),entries(2).toDouble)).toDF("time","symbol","value")//.toDS()

    val windowedCount = stockDs
    .withWatermark("time", "20000 milliseconds")
    .groupBy(
    window($"time", "10 seconds"),
    $"symbol"
    )
    .agg(sum("value"), count($"symbol"))

    val query =
    windowedCount.writeStream
    .format("console")
    .option("truncate", "false")
    .outputMode(OutputMode.Append())

    query.start().awaitTermination()

    结果是:
    Batch: 14
    ----------------------------------------------+------+----------+-------------+
    |window |symbol|sum(value)|count(symbol)|
    +---------------------------------------------+------+----------+-------------+
    |[2016-04-27 04:34:20.0,2016-04-27 04:34:30.0]|"aap1"|4200.0 |6 |
    |[2016-04-27 04:34:30.0,2016-04-27 04:34:40.0]|"app1"|800.0 |2 |
    |[2016-04-27 04:34:20.0,2016-04-27 04:34:30.0]|"aap2"|2500.0 |1 |
    |[2016-04-27 04:34:40.0,2016-04-27 04:34:50.0]|"app1"|2800.0 |4 |
    +---------------------------------------------+------+----------+-------------+

    这是一个相当大的话题,你需要从整体上看待它。

    您可以看到输出在某些情况下可能会很方便,尽管 avg 输出可用于计算整体 avg。成功。

    关于apache-spark - spark结构化流异常: Append output mode not supported without watermark,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54117961/

    28 4 0
    Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
    广告合作:1813099741@qq.com 6ren.com