- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
这是有关 MobileNet V3 的论文的链接。
MobileNet V3
根据该论文,h-swish 和 Squeeze-and-excitation 模块是在 MobileNet V3 中实现的,但它们旨在提高准确性,而无助于提高速度。
h-swish 比 swish 快,有助于提高准确性,但如果我没记错的话,它比 ReLU 慢得多。
SE 也有助于提高准确性,但它增加了网络的参数数量。
我错过了什么吗?我仍然不知道 MobileNet V3 如何比 V2 更快,上面所说的在 V3 中实现。
我没有提到他们还修改了他们网络的最后一部分,因为我计划使用 MobileNet V3 作为 Backbone 络并将其与 SSD 层结合起来进行检测,因此网络的最后一部分不会用过的。
下表(可在上述论文中找到)显示 V3 仍然比 V2 快。
Object detection results for comparison
最佳答案
MobileNetV3 在分类任务上比 MobileNetV2 更快、更准确,但在不同的任务上不一定如此,例如对象检测。
正如您自己提到的,他们在网络最深端所做的优化主要与分类变体相关,并且从您引用的表中可以看出,mAP 也好不到哪里去。
不过有几点需要考虑:
关于deep-learning - MobileNet V3 比 V2 快多少?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56949807/
你能告诉我,下面两种 scss 样式之间的区别吗?我对此没有清楚的认识。 :host { display: inline-block; /deep/ { span { co
/deep/和::ng-deep 这些在 DOM 模式下也被弃用了,我想知道将来是否会有/deep/和::ng-deep 的替代方案,或者我们应该开始使用其他方式? ::ng-deep .result
长期以来,我一直在寻找这个问题的明确答案。是否有可靠且推荐的替代策略来执行此操作?此问题的不正确答案包括: Just favor ::ng-deep for now 和 if component au
关闭。这个问题需要更多focused .它目前不接受答案。 想改进这个问题吗? 更新问题,使其只关注一个问题 editing this post . 关闭 2 年前。 Improve this qu
我正在阅读 DQN 网络上的 deepmind 自然论文。 我几乎得到了关于它的一切,除了一个。我不知道为什么以前没有人问过这个问题,但无论如何对我来说似乎有点奇怪。 我的问题: DQN 的输入是一个
我在我的新 Jetpack Compose 应用程序中设置了一个底栏,其中包含 2 个目的地。我尝试遵循 Google 的示例。 例如它看起来像这样: @Composable fun MyBottom
所以,我读过 here在 Vue.js 中,您可以在选择器中使用 /deep/ 或 >>> 来创建适用于子组件内部元素的样式规则。但是,尝试在我的样式中使用它,无论是在 SCSS 中还是在普通的旧 C
我正在尝试实现DQN和DDQN(两者都有经验回复)来解决OpenAI AI-Gym Cartpole环境。这两种方法有时都能学习并解决这个问题,但并非总是如此。 我的网络只是一个前馈网络(我尝试过使用
scss中下面两个有什么区别,在片段中给出一些例子。 :host::ng-deep .content-body { ... } 和 .content-body :host::ng-deep { ...
在我们的元素中,我们使用了 Angular Material 进行开发。我们已经覆盖了 使用::ng-deep 的 Angular Material 样式自定义 CSS 属性。 在使用::ng-dee
我尝试熟悉 Q-learning 和深度神经网络,目前尝试实现 Playing Atari with Deep Reinforcement Learning . 为了测试我的实现并尝试使用它,我坚持尝
我开始在 Vue 3 中收到以下警告 ::v-deep用法。 ::v-deep usage as a combinator has been deprecated. Use ::v-deep() in
谁能给我解释一下 df2 = df1 df2 = df1.copy() df3 = df1.copy(deep=False) 我已经尝试了所有选项并执行了以下操作: df1 = pd.DataFram
我对 PyTorch 比较陌生,但我对 Keras 和 TensorFlow 有很好的经验。我关注了这个article在我自己的训练脚本中使用 DDP。然而,出于某种原因,我总是最终得到: proce
我正在尝试为 Conv2D 和 transposeconv2D 层编写 dropconnect 代码。按照 https://pytorchnlp.readthedocs.io/en/latest/_m
我正在做一个 mask 检测项目,我使用 ultralytics/yolov5 训练了我的模型。我将训练好的模型保存为一个 onnx 文件,你可以在这里找到模型文件 model.onnx .现在我希望
我正在研究一种强化算法,我对此很陌生,并试图掌握一些东西。 Player1Env 查看 7x6 Connect4 游戏网格。我按如下方式初始化类: def __init__(self): su
我有几个嵌入矩阵,假设 E1 矩阵用于 Glove,E2 用于 Word2vec。 我想构建一个简单的情感分类器,它采用该嵌入的可训练加权和。 例如,对于单词“dog”,我想在学习 x 和 y 时得到
我正在使用它处理深度学习和医学图像分类。我使用大脑 MRI 数据并将它们转换为 jpg。然后使用 VGG16 进行训练。当我检查损失、准确性、验证损失和验证准确性时,我看到了下图。 accuracy
我设计的网络包括转置卷积层。(pytorch 中的 ConvTranspose2d) 我想获得网络的感受野大小。 感受野的概念是否也适用于转置卷积层? 如果是,那我怎样才能得到它? 最佳答案 您可以使
我是一名优秀的程序员,十分优秀!