gpt4 book ai didi

python - 使用置换向量对矩阵重新排序,但保持矩阵的原始大小

转载 作者:行者123 更新时间:2023-12-03 16:35:06 24 4
gpt4 key购买 nike

我有一个简单的问题,但无法解决。我有一个类似C_temp的16x16矩阵(size = 16),是从另一个矩阵复制来的。

C_temp = np.zeros((size, size))                                                                                
C_temp = np.copy(C_in)

然后,我有一个置换列表(或numpy数组,我不知道这是否重要):
print('index_reorder =', index_reorder)给出:
index_reorder = ', array([2, 4, 0, 5, 1, 3, 7, 8]))

我想做 index_reorder以及 x axisy axis指示的排列。
      C_temp = np.copy(C_in)
C_temp = C_temp[:, index_reorder]
C_temp = C_temp[index_reorder, :]
C_new = np.copy(C_temp)

但不幸的是,新矩阵 C_new的大小减小为8x8。

这不是我想要的:我想为 C_new矩阵 (16x16)保持相同的大小,即在进行排列的同时保留整个排列矩阵 C_temp的大小。

如何执行此全局置换?

我相信这就是所谓的“就地置换”,不是吗?

更新1:这是 C_in矩阵16x16的示例
C_in = ', array([[ 5.39607129e+06,  1.79979372e+06, -2.46370980e+06,
-1.12590397e+06, 2.54997996e+03, -3.48237530e+02,
1.77139942e+05, 2.10555125e+04, -2.24912032e+05,
-9.79292472e+01, -1.63415352e+05, -8.65388775e+01,
-8.10556705e+04, -6.40511456e+01, 1.31499502e+04,
-4.80973452e+01],
[ 1.79979372e+06, 1.85207497e+07, -5.97280544e+06,
-4.86527342e+05, -9.46833729e+05, -2.10321296e+05,
-7.71198259e+05, -8.88750203e+04, -1.66150873e+06,
-3.20782728e+02, -1.45257426e+06, -2.86060423e+02,
-1.10641471e+06, -2.17539743e+02, -9.34181143e+05,
-1.77667406e+02],
[-2.46370980e+06, -5.97280544e+06, 3.36326384e+06,
5.88733451e+05, 3.35606646e+05, 8.96417015e+04,
1.12240864e+05, 1.35483472e+04, 6.10023925e+05,
1.26679014e+02, 5.65166386e+05, 1.21455772e+02,
4.43234727e+05, 9.80424886e+01, 3.68206009e+05,
8.44106515e+01],
[-1.12590397e+06, -4.86527342e+05, 5.88733451e+05,
3.34731505e+05, -3.26665859e+04, -7.14038524e+03,
-7.25370986e+04, -8.44842826e+03, 4.40874561e+04,
2.82933253e+01, 2.77238713e+04, 2.47986977e+01,
7.27381187e+03, 1.80784440e+01, -1.87787106e+04,
1.31142301e+01],
[ 2.54997996e+03, -9.46833729e+05, 3.35606646e+05,
-3.26665859e+04, 7.90884228e+04, 1.92364617e+04,
5.66130910e+04, 6.70772964e+03, 1.07063410e+05,
1.46143888e+01, 9.53013920e+04, 1.33963997e+01,
7.42574771e+04, 1.04791841e+01, 6.58013341e+04,
8.95530786e+00],
[-3.48237530e+02, -2.10321296e+05, 8.96417015e+04,
-7.14038524e+03, 1.92364617e+04, 4.99000202e+03,
1.10082611e+04, 1.34941127e+03, 2.41927165e+04,
3.26733542e+00, 2.31011986e+04, 3.22432044e+00,
1.88491639e+04, 2.65297382e+00, 1.72802490e+04,
2.36016813e+00],
[ 1.77139942e+05, -7.71198259e+05, 1.12240864e+05,
-7.25370986e+04, 5.66130910e+04, 1.10082611e+04,
9.36434428e+04, 1.07348807e+04, 6.09534507e+04,
3.44072173e+00, 5.90764148e+04, 4.26292063e+00,
5.10904441e+04, 4.37089791e+00, 5.24285786e+04,
5.06825219e+00],
[ 2.10555125e+04, -8.88750203e+04, 1.35483472e+04,
-8.44842826e+03, 6.70772964e+03, 1.34941127e+03,
1.07348807e+04, 1.48215248e+03, 2.49002654e+03,
1.40557890e-01, 5.84713359e+03, 4.21925848e-01,
7.21719030e+03, 6.17446227e-01, 9.39064037e+03,
9.07789891e-01],
[-2.24912032e+05, -1.66150873e+06, 6.10023925e+05,
4.40874561e+04, 1.07063410e+05, 2.41927165e+04,
6.09534507e+04, 2.49002654e+03, 5.91760033e+05,
9.77850970e+01, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],
[-9.79292472e+01, -3.20782728e+02, 1.26679014e+02,
2.82933253e+01, 1.46143888e+01, 3.26733542e+00,
3.44072173e+00, 1.40557890e-01, 9.77850970e+01,
2.42137019e-02, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],
[-1.63415352e+05, -1.45257426e+06, 5.65166386e+05,
2.77238713e+04, 9.53013920e+04, 2.31011986e+04,
5.90764148e+04, 5.84713359e+03, 0.00000000e+00,
0.00000000e+00, 4.84422452e+05, 8.24104281e+01,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],
[-8.65388775e+01, -2.86060423e+02, 1.21455772e+02,
2.47986977e+01, 1.33963997e+01, 3.22432044e+00,
4.26292063e+00, 4.21925848e-01, 0.00000000e+00,
0.00000000e+00, 8.24104281e+01, 2.11226210e-02,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00],
[-8.10556705e+04, -1.10641471e+06, 4.43234727e+05,
7.27381187e+03, 7.42574771e+04, 1.88491639e+04,
5.10904441e+04, 7.21719030e+03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
3.50093152e+05, 6.00111232e+01, 0.00000000e+00,
0.00000000e+00],
[-6.40511456e+01, -2.17539743e+02, 9.80424886e+01,
1.80784440e+01, 1.04791841e+01, 2.65297382e+00,
4.37089791e+00, 6.17446227e-01, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
6.00111232e+01, 1.57248915e-02, 0.00000000e+00,
0.00000000e+00],
[ 1.31499502e+04, -9.34181143e+05, 3.68206009e+05,
-1.87787106e+04, 6.58013341e+04, 1.72802490e+04,
5.24285786e+04, 9.39064037e+03, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 2.83150690e+05,
4.74239664e+01],
[-4.80973452e+01, -1.77667406e+02, 8.44106515e+01,
1.31142301e+01, 8.95530786e+00, 2.36016813e+00,
5.06825219e+00, 9.07789891e-01, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
0.00000000e+00, 0.00000000e+00, 4.74239664e+01,
1.26116519e-02]]))

和输出 C_new矩阵:
C_new = ', array([[ 3.36326384e+06,  3.35606646e+05, -2.46370980e+06,
8.96417015e+04, -5.97280544e+06, 5.88733451e+05,
1.35483472e+04, 6.10023925e+05],
[ 3.35606646e+05, 7.90884228e+04, 2.54997996e+03,
1.92364617e+04, -9.46833729e+05, -3.26665859e+04,
6.70772964e+03, 1.07063410e+05],
[-2.46370980e+06, 2.54997996e+03, 5.39607129e+06,
-3.48237530e+02, 1.79979372e+06, -1.12590397e+06,
2.10555125e+04, -2.24912032e+05],
[ 8.96417015e+04, 1.92364617e+04, -3.48237530e+02,
4.99000202e+03, -2.10321296e+05, -7.14038524e+03,
1.34941127e+03, 2.41927165e+04],
[-5.97280544e+06, -9.46833729e+05, 1.79979372e+06,
-2.10321296e+05, 1.85207497e+07, -4.86527342e+05,
-8.88750203e+04, -1.66150873e+06],
[ 5.88733451e+05, -3.26665859e+04, -1.12590397e+06,
-7.14038524e+03, -4.86527342e+05, 3.34731505e+05,
-8.44842826e+03, 4.40874561e+04],
[ 1.35483472e+04, 6.70772964e+03, 2.10555125e+04,
1.34941127e+03, -8.88750203e+04, -8.44842826e+03,
1.48215248e+03, 2.49002654e+03],
[ 6.10023925e+05, 1.07063410e+05, -2.24912032e+05,
2.41927165e+04, -1.66150873e+06, 4.40874561e+04,
2.49002654e+03, 5.91760033e+05]]))

我只想根据行/列的 index_reorder向量交换行/列(即看起来像排列?)。

最佳答案

如您所知,问题是index_reorder仅包含重新排序的元素。

解决方案是将其扩展到所有元素的完整排列。如果元素应保留在原位,只需在其旧位置写入索引即可保留。

例如。:

index_reorder = [2, 4, 0, 5, 1, 3, 7, 8]

应该转换为:
full_reorder = [2, 4, 0, 5, 1, 3, 7, 8, 6, 9, 10, 11, 12, 13, 14, 15]

请注意,9-> 9,10-> 10,11-> 11 ....这样,它们不会移动也不丢失。还会有其他 full_reorders可以考虑,它们的选择仅取决于您的偏好。您可能更喜欢的一种是 [2, 4, 0, 5, 1, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]。在这里6-> 6,原始排列在其周围延伸。

在第一个示例中给出的更改后的重新排序可以实现如下:
all_indices = np.array(range(16))
other_indices = np.setdiff1d(all_indices, index_reorder)
full_reorder = np.concatenate([index_reorder, other_indices])

然后继续完成操作:
C_temp = np.copy(C_in)
C_temp = C_temp[:, full_reorder]
C_temp = C_temp[full_reorder, :]

关于python - 使用置换向量对矩阵重新排序,但保持矩阵的原始大小,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62189710/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com