- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试构建 ML 模型。但是,我很难理解在哪里应用编码。
请参阅下面的步骤和功能来复制我一直遵循的过程。
首先,我将数据集拆分为训练和测试:
# Import the resampling package
from sklearn.naive_bayes import MultinomialNB
import string
from nltk.corpus import stopwords
import re
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import RegexpTokenizer
from sklearn.utils import resample
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
# Split into training and test sets
# Testing Count Vectorizer
X = df[['Text']]
y = df['Label']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=40)
# Returning to one dataframe
training_set = pd.concat([X_train, y_train], axis=1)
现在我应用(下)抽样:
# Separating classes
spam = training_set[training_set.Label == 1]
not_spam = training_set[training_set.Label == 0]
# Undersampling the majority
undersample = resample(not_spam,
replace=True,
n_samples=len(spam), #set the number of samples to equal the number of the minority class
random_state=40)
# Returning to new training set
undersample_train = pd.concat([spam, undersample])
我应用所选的算法:
full_result = pd.DataFrame(columns = ['Preprocessing', 'Model', 'Precision', 'Recall', 'F1-score', 'Accuracy'])
X, y = BOW(undersample_train)
full_result = full_result.append(training_naive(X_train, X_test, y_train, y_test, 'Count Vectorize'), ignore_index = True)
其中 BOW 定义如下
def BOW(data):
df_temp = data.copy(deep = True)
df_temp = basic_preprocessing(df_temp)
count_vectorizer = CountVectorizer(analyzer=fun)
count_vectorizer.fit(df_temp['Text'])
list_corpus = df_temp["Text"].tolist()
list_labels = df_temp["Label"].tolist()
X = count_vectorizer.transform(list_corpus)
return X, list_labels
basic_preprocessing
定义如下:
def basic_preprocessing(df):
df_temp = df.copy(deep = True)
df_temp = df_temp.rename(index = str, columns = {'Clean_Titles_2': 'Text'})
df_temp.loc[:, 'Text'] = [text_prepare(x) for x in df_temp['Text'].values]
#le = LabelEncoder()
#le.fit(df_temp['medical_specialty'])
#df_temp.loc[:, 'class_label'] = le.transform(df_temp['medical_specialty'])
tokenizer = RegexpTokenizer(r'\w+')
df_temp["Tokens"] = df_temp["Text"].apply(tokenizer.tokenize)
return df_temp
哪里
text_prepare
是:
def text_prepare(text):
REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]')
BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]')
STOPWORDS = set(stopwords.words('english'))
text = text.lower()
text = REPLACE_BY_SPACE_RE.sub('', text) # replace REPLACE_BY_SPACE_RE symbols by space in text
text = BAD_SYMBOLS_RE.sub('', text) # delete symbols which are in BAD_SYMBOLS_RE from text
words = text.split()
i = 0
while i < len(words):
if words[i] in STOPWORDS:
words.pop(i)
else:
i += 1
text = ' '.join(map(str, words))# delete stopwords from text
return text
和
def training_naive(X_train_naive, X_test_naive, y_train_naive, y_test_naive, preproc):
clf = MultinomialNB() # Gaussian Naive Bayes
clf.fit(X_train_naive, y_train_naive)
res = pd.DataFrame(columns = ['Preprocessing', 'Model', 'Precision', 'Recall', 'F1-score', 'Accuracy'])
y_pred = clf.predict(X_test_naive)
f1 = f1_score(y_pred, y_test_naive, average = 'weighted')
pres = precision_score(y_pred, y_test_naive, average = 'weighted')
rec = recall_score(y_pred, y_test_naive, average = 'weighted')
acc = accuracy_score(y_pred, y_test_naive)
res = res.append({'Preprocessing': preproc, 'Model': 'Naive Bayes', 'Precision': pres,
'Recall': rec, 'F1-score': f1, 'Accuracy': acc}, ignore_index = True)
return res
如您所见,顺序是:
Label Text Year
1 bla bla bla 2000
0 add some words 2012
1 this is just an example 1998
0 unfortunately the code does not work 2018
0 where should I apply the encoding? 2000
0 What am I missing here? 2005
我应用 BOW 时的顺序是错误的,因为我收到此错误:
ValueError: could not convert string to float: 'Expect a good results if ... '
我按照步骤(和来自此链接的代码=:
kaggle.com/ruzarx/oversampling-smote-and-adasyn 。
最佳答案
您需要有一个测试 BOW 函数,该函数应该重用在训练阶段构建的计数向量化器模型。
考虑使用管道来减少代码冗长。
from sklearn.naive_bayes import MultinomialNB
import string
from nltk.corpus import stopwords
import re
from sklearn.model_selection import train_test_split
from io import StringIO
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import RegexpTokenizer
from sklearn.utils import resample
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
def fun(text):
remove_punc = [c for c in text if c not in string.punctuation]
remove_punc = ''.join(remove_punc)
cleaned = [w for w in remove_punc.split() if w.lower()
not in stopwords.words('english')]
return cleaned
# Testing Count Vectorizer
def BOW(data):
df_temp = data.copy(deep=True)
df_temp = basic_preprocessing(df_temp)
count_vectorizer = CountVectorizer(analyzer=fun)
count_vectorizer.fit(df_temp['Text'])
list_corpus = df_temp["Text"].tolist()
list_labels = df_temp["Label"].tolist()
X = count_vectorizer.transform(list_corpus)
return X, list_labels, count_vectorizer
def test_BOW(data, count_vectorizer):
df_temp = data.copy(deep=True)
df_temp = basic_preprocessing(df_temp)
list_corpus = df_temp["Text"].tolist()
list_labels = df_temp["Label"].tolist()
X = count_vectorizer.transform(list_corpus)
return X, list_labels
def basic_preprocessing(df):
df_temp = df.copy(deep=True)
df_temp = df_temp.rename(index=str, columns={'Clean_Titles_2': 'Text'})
df_temp.loc[:, 'Text'] = [text_prepare(x) for x in df_temp['Text'].values]
tokenizer = RegexpTokenizer(r'\w+')
df_temp["Tokens"] = df_temp["Text"].apply(tokenizer.tokenize)
return df_temp
def text_prepare(text):
REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]')
BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]')
STOPWORDS = set(stopwords.words('english'))
text = text.lower()
# replace REPLACE_BY_SPACE_RE symbols by space in text
text = REPLACE_BY_SPACE_RE.sub('', text)
# delete symbols which are in BAD_SYMBOLS_RE from text
text = BAD_SYMBOLS_RE.sub('', text)
words = text.split()
i = 0
while i < len(words):
if words[i] in STOPWORDS:
words.pop(i)
else:
i += 1
text = ' '.join(map(str, words)) # delete stopwords from text
return text
s = """Label Text Year
1 bla bla bla 2000
0 add some words 2012
1 this is just an example 1998
0 unfortunately the code does not work 2018
0 where should I apply the encoding? 2000
0 What am I missing here? 2005"""
df = pd.read_csv(StringIO(s), sep='\s{2,}')
X = df[['Text']]
y = df['Label']
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=40)
# Returning to one dataframe
training_set = pd.concat([X_train, y_train], axis=1)
# Separating classes
spam = training_set[training_set.Label == 1]
not_spam = training_set[training_set.Label == 0]
# Undersampling the majority
undersample = resample(not_spam,
replace=True,
# set the number of samples to equal the number of the minority class
n_samples=len(spam),
random_state=40)
# Returning to new training set
undersample_train = pd.concat([spam, undersample])
full_result = pd.DataFrame(columns=['Preprocessing', 'Model', 'Precision',
'Recall', 'F1-score', 'Accuracy'])
train_x, train_y, count_vectorizer = BOW(undersample_train)
testing_set = pd.concat([X_test, y_test], axis=1)
test_x, test_y = test_BOW(testing_set, count_vectorizer)
def training_naive(X_train_naive, X_test_naive, y_train_naive, y_test_naive, preproc):
clf = MultinomialNB() # Gaussian Naive Bayes
clf.fit(X_train_naive, y_train_naive)
res = pd.DataFrame(columns = ['Preprocessing', 'Model', 'Precision', 'Recall', 'F1-score', 'Accuracy'])
y_pred = clf.predict(X_test_naive)
f1 = f1_score(y_pred, y_test_naive, average = 'weighted')
pres = precision_score(y_pred, y_test_naive, average = 'weighted')
rec = recall_score(y_pred, y_test_naive, average = 'weighted')
acc = accuracy_score(y_pred, y_test_naive)
res = res.append({'Preprocessing': preproc, 'Model': 'Naive Bayes', 'Precision': pres,
'Recall': rec, 'F1-score': f1, 'Accuracy': acc}, ignore_index = True)
return res
full_result = full_result.append(training_naive(train_x, test_x, train_y, test_y, 'Count Vectorize'), ignore_index = True)
关于python - 在 ML 分类器中编码文本,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/65191701/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!