- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我已经在 Tensorflow 中训练了一个模型。在训练过程中,我在优化器中设置了一个 var_list,换句话说,我在 CNN 之上训练了一个 GRU。这是优化器的代码:
with tf.name_scope('optimizer'):
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimizer = tf.train.AdamOptimizer(0.0001).minimize(MSE, var_list=gru_output_var_list)
var_list
来自优化器为了能够微调整个网络,使用 GRU 卷积层。但是,这引发了一个错误:
Key weight_fc_sig/Adam_1 not found in checkpoint
weight_fc_sig
是模型中变量之一的名称。
最佳答案
首先,我在 tensorflow 中构建了一个模型,然后我将带有变量的图形保存到一个检查点中:
saver = tf.train.Saver()
saver.save(sess, model_path + "ckpt")
因此,当我检查通过以下方式存储的变量列表时:
from tensorflow.python import pywrap_tensorflow
model_path = 'C:/Users/user/PycharmProjects/TensorflowDifferentProjects/MNIStDataset/tensorlogs/ckpt'
reader = pywrap_tensorflow.NewCheckpointReader(model_path)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in sorted(var_to_shape_map):
print("tensor_name: ", key)
我得到以下变量列表:
tensor_name: Adam_optimizer/beta1_power
tensor_name: Adam_optimizer/beta2_power
tensor_name: conv1/biases
tensor_name: conv1/biases/Adam
tensor_name: conv1/biases/Adam_1
tensor_name: conv1/weights
tensor_name: conv1/weights/Adam
tensor_name: conv1/weights/Adam_1
tensor_name: conv2/biases
tensor_name: conv2/biases/Adam
tensor_name: conv2/biases/Adam_1
tensor_name: conv2/weights
tensor_name: conv2/weights/Adam
tensor_name: conv2/weights/Adam_1
tensor_name: fc1/biases
tensor_name: fc1/biases/Adam
tensor_name: fc1/biases/Adam_1
tensor_name: fc1/weights
tensor_name: fc1/weights/Adam
tensor_name: fc1/weights/Adam_1
tensor_name: fc2/biases
tensor_name: fc2/biases/Adam
tensor_name: fc2/biases/Adam_1
tensor_name: fc2/weights
tensor_name: fc2/weights/Adam
tensor_name: fc2/weights/Adam_1
当我再次训练相同的模型时,但这一次,我仅将权重和偏差列表传递给保护程序:
tensor_name: conv1/biases
tensor_name: conv1/weights
tensor_name: conv2/biases
tensor_name: conv2/weights
tensor_name: fc1/biases
tensor_name: fc1/weights
tensor_name: fc2/biases
tensor_name: fc2/weights
现在,当我尝试再次运行相同的模型时,但删除了要恢复的变量列表,所以我现在有了这个保护程序:
saver = tf.train.Saver(),
我遇到了以下错误:
Key fc2/weights/Adam_1 not found in checkpoint.
因此,解决方案是明确提及我需要恢复的变量列表。换句话说,即使当我只
saver = tf.train.Saver(var_list=lst_vars)
哪里
lst_vars
是我需要恢复的变量列表,它与那个相同
saver = tf.train.Saver(var_list=lst_vars)
这不会造成任何问题
with tf.name_scope('Adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy, var_list=lst_vars[:3])
saver = tf.train.Saver(var_list=lst_vars)
然后我可以再次运行相同的模型,但优化器中没有 var_list 参数。所以这就是微调的情况。
tensor_name: conv1/biases
tensor_name: conv1/weights
tensor_name: conv2/biases
tensor_name: conv2/weights
tensor_name: fc1/biases
tensor_name: fc1/weights
tensor_name: fc2/biases
tensor_name: fc2/weights
我应该向保护程序提及这些是我正在恢复的变量。所以我说了以下几点:
saver = tf.train.Saver(var_list=[lst_vars[0], lst_vars[1], lst_vars[2], lst_vars[3],
lst_vars[6], lst_vars[7], lst_vars[8], lst_vars[9]])
在这种情况下,不会有任何问题并且代码会运行良好!!!
saver = tf.train.Saver()
然后恢复模型的一部分(通过再次运行模型,并通过:
saver = tf.train.Saver(var_list=lst_vars))
此外,我可以修改模型并添加更多的卷积层。所以我可以微调模型,只要我确切地提到了什么
saver = tf.train.Saver(var_list=[lst_vars[0], lst_vars[1], lst_vars[2], lst_vars[3],
lst_vars[6], lst_vars[7], lst_vars[8], lst_vars[9]])
所有这些解释都是因为我认为优化器可能存在一些问题,我需要知道如何休息。在 github 上提出了一个问题,正是关于如何让优化器休息,这也是我得出所有这些结论的原因
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import os
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def deepnn(x):
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer, maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
w_conv1 = weight_variable([5, 5, 1, 32], name='weights')
b_conv1 = bias_variable([32], name='biases')
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
# Pooling layer, downsampling by 2X
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64
with tf.name_scope('conv2'):
w_conv2 = weight_variable([5, 5, 32, 64], name='weights')
b_conv2 = bias_variable([64], name='biases')
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
# Second pooling layer
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
# Fully connected layer 1 -- after 2 round of downsampling, our 28 x 28 image is
# down to 7 x 7 x 64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
w_fc1 = weight_variable([7 * 7 * 64, 1024], name='weights')
b_fc1 = bias_variable([1024], name='biases')
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
# Dropout - control the complexity of the model, prevents co-adaptation of features
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit.
with tf.name_scope('fc2'):
w_fc2 = weight_variable([1024, 10], name='weights')
b_fc2 = bias_variable([10], name='biases')
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
return y_conv, keep_prob
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)
cross_entropy = tf.reduce_mean(cross_entropy)
# Note that this list of variables only include the weights and biases in the model.
lst_vars = []
for v in tf.global_variables():
lst_vars.append(v)
print(v.name, '....')
with tf.name_scope('Adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
model_path = 'C:/Users/user/PycharmProjects/TensorflowDifferentProjects/MNIStDataset/tensorlogs/'
saver = tf.train.Saver(var_list=lst_vars)
train_writer = tf.summary.FileWriter(model_path + "EventsFile/")
train_writer.add_graph(tf.get_default_graph())
for v in tf.global_variables():
print(v.name)
# Note that a session is created within a with block so that it is destroyed
# once the block has been exited.
with tf.Session() as sess:
print('all variables initialized!!')
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(
os.path.dirname(model_path))
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('checkpoints are saved!!!')
else:
print('No stored checkpoints')
for i in range(700):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
save_path = saver.save(sess, model_path + "ckpt")
和修改后的模型(我添加了另一个卷积层):
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import os
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial, name=name)
def bias_variable(shape, name):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial, name=name)
def deepnn(x):
with tf.name_scope('reshape'):
x_image = tf.reshape(x, [-1, 28, 28, 1])
# First convolutional layer, maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
w_conv1 = weight_variable([5, 5, 1, 32], name='weights')
b_conv1 = bias_variable([32], name='biases')
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
# Pooling layer, downsampling by 2X
with tf.name_scope('pool1'):
h_pool1 = max_pool_2x2(h_conv1)
# Second convolutional layer -- maps 32 feature maps to 64
with tf.name_scope('conv2'):
w_conv2 = weight_variable([5, 5, 32, 64], name='weights')
b_conv2 = bias_variable([64], name='biases')
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
# Second pooling layer
with tf.name_scope('pool2'):
h_pool2 = max_pool_2x2(h_conv2)
with tf.name_scope('conv3'):
w_conv3 = weight_variable([1, 1, 64, 64], name='weights')
b_conv3 = bias_variable([64], name='biases')
h_conv3 = tf.nn.relu(conv2d(h_pool2, w_conv3) + b_conv3)
# Fully connected layer 1 -- after 2 round of downsampling, our 28 x 28 image is
# down to 7 x 7 x 64 feature maps -- maps this to 1024 features.
with tf.name_scope('fc1'):
w_fc1 = weight_variable([7 * 7 * 64, 1024], name='weights')
b_fc1 = bias_variable([1024], name='biases')
h_conv3_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, w_fc1) + b_fc1)
# Dropout - control the complexity of the model, prevents co-adaptation of features
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# Map the 1024 features to 10 classes, one for each digit.
with tf.name_scope('fc2'):
w_fc2 = weight_variable([1024, 10], name='weights')
b_fc2 = bias_variable([10], name='biases')
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
return y_conv, keep_prob
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# Create the model
x = tf.placeholder(tf.float32, [None, 784])
# Define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])
# Build the graph for the deep net
y_conv, keep_prob = deepnn(x)
with tf.name_scope('loss'):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv)
cross_entropy = tf.reduce_mean(cross_entropy)
# Note that this list of variables only include the weights and biases in the model.
lst_vars = []
for v in tf.global_variables():
lst_vars.append(v)
print(v.name, '....')
with tf.name_scope('Adam_optimizer'):
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.arg_max(y_conv, 1), tf.arg_max(y_, 1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(correct_prediction)
model_path = 'C:/Users/user/PycharmProjects/TensorflowDifferentProjects/MNIStDataset/tensorlogs/'
saver = tf.train.Saver(var_list=[lst_vars[0], lst_vars[1], lst_vars[2], lst_vars[3],
lst_vars[6], lst_vars[7], lst_vars[8], lst_vars[9]])
train_writer = tf.summary.FileWriter(model_path + "EventsFile/")
train_writer.add_graph(tf.get_default_graph())
for v in tf.global_variables():
print(v.name)
# Note that a session is created within a with block so that it is destroyed
# once the block has been exited.
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('all variables initialized!!')
ckpt = tf.train.get_checkpoint_state(
os.path.dirname(model_path))
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
print('checkpoints are saved!!!')
else:
print('No stored checkpoints')
for i in range(700):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print('test accuracy %g' % accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
save_path = saver.save(sess, model_path + "ckpt")
关于optimization - 更改优化器参数后在 Tensorflow 中错误恢复模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48161147/
我正在尝试运行以下代码片段,以使曲线适合一些经验数据,但在Julia Optim.jl包中,optimize()方法一直存在问题。我正在使用Julia v1.1.0,并安装了所有正确的软件包。我不断收
时不时你会听到一些故事,这些故事旨在说明某人在某件事上有多擅长,有时你会听到这个人如何热衷于代码优化,以至于他优化了他的延迟循环。 因为这听起来确实是一件奇怪的事情,因为启动“计时器中断”而不是优化的
我正在尝试使用 z3py 作为优化求解器来最大化从一张纸上切出的长方体的体积。 python API 提供了 Optimize() 对象,但使用它似乎不可靠,给我的解决方案显然不准确。 我尝试使用 h
我今天接受了采访。这个问题是为了优化下面的代码。如果我们将在 for 循环之后看到下面的代码,那么下面有四个“if-else”步骤。所以,面试官要求我将其优化为 3 if-else 行。我已经尝试了很
我使用BFGS算法使用Optim.jl库来最小化Julia中的函数。今天,我问了一个关于同一个库的question,但是为了避免混淆,我决定将它分成两部分。 我还想对优化后的负逆黑森州进行估算,以进行
在 haskell 平台中实现许多功能时有一个非常常见的模式让我很困扰,但我找不到解释。这是关于使用嵌套函数进行优化。 where 子句中的嵌套函数旨在进行尾递归的原因对我来说非常清楚(如 lengt
我目前正试图利用 Julia 中的 Optim 包来最小化成本函数。成本函数是 L2 正则化逻辑回归的成本函数。其构造如下; using Optim function regularised_cost
我正在使用 GEKKO 来解决非线性规划问题。我的目标是将 GEKKO 性能与替代方案进行比较,因此我想确保我从 GEKKO 中获得其所能提供的最佳性能。 有n个二元变量,每个变量都分配有一个权
我可以手动更改参数C和epsilon以获得优化结果,但我发现有PSO(或任何其他优化算法)对SVM进行参数优化。没有算法。什么意思:PSO如何自动优化SVM参数?我读了几篇关于这个主题的论文,但我仍然
我正在使用 scipy.optimize.fmin_l_bfgs_b 来解决高斯混合问题。混合分布的均值通过回归建模,其权重必须使用 EM 算法进行优化。 sigma_sp_new, func_val
当你有一个 Option ,编译器知道 NULL永远不是 &T 的可能值, 和 encodes the None variant as NULL instead .这样可以节省空间: use std:
当你有一个 Option ,编译器知道 NULL永远不是 &T 的可能值, 和 encodes the None variant as NULL instead .这样可以节省空间: use std:
以下是说明我的问题的独立示例。 using Optim χI = 3 ψI = 0.5 ϕI(z) = z^-ψI λ = 1.0532733 V0 = 0.8522423425 zE = 0.598
根据MySQL文档关于Optimizing Queries With Explain : * ALL: A full table scan is done for each combination o
我无法预览我的 Google 优化工具体验。 Google 优化抛出以下错误: 最佳答案 我也经常遇到这种情况。 Google 给出的建议是错误的。清除 cookie 并重新启动浏览器并不能解决问题。
我一直在尝试使用 optim()或 optimize()函数来最小化绝对预测误差的总和。 我有 2 个向量,每个长度为 28,1 个包含预测数据,另一个包含过去 28 天的实际数据。 fcst和 ac
在我对各种编译器书籍和网站的独立研究中,我了解到编译器可以优化正在编译的代码的许多不同方法,但我很难弄清楚每种优化会带来多少好处给予。 大多数编译器编写者如何决定首先实现哪些优化?或者哪些优化值得付出
我在我的项目中使用 System.Web.Optimizations BundleConfig。我在我的网站上使用的特定 jQuery 插件遇到了问题。如果我将文件添加到我的 ScriptBundle
我收到这个错误 Error: webpack.optimize.CommonsChunkPlugin has been removed, please use config.optimization.
scipy的optimize.fmin和optimize.leastsq有什么区别?它们似乎在 this example page 中以几乎相同的方式使用.我能看到的唯一区别是 leastsq 实际上
我是一名优秀的程序员,十分优秀!