- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我不明白为什么 value_counts 给了我错误的答案。这是一个小例子:
In [81]: d=pd.DataFrame([[0,0],[1,100],[0,100],[2,0],[3,100],[4,100],[4,100],[4,100],[1,100],[3,100]],columns=['key','score'])
In [82]: d
Out[82]:
key score
0 0 0
1 1 100
2 0 100
3 2 0
4 3 100
5 4 100
6 4 100
7 4 100
8 1 100
9 3 100
In [83]: g=d.groupby('key')['score']
In [84]: g.value_counts(bins=[0, 20, 40, 60, 80, 100])
Out[84]:
key score
0 (-0.001, 20.0] 1
(20.0, 40.0] 1
(40.0, 60.0] 0
(60.0, 80.0] 0
(80.0, 100.0] 0
1 (20.0, 40.0] 2
(-0.001, 20.0] 0
(40.0, 60.0] 0
(60.0, 80.0] 0
(80.0, 100.0] 0
2 (-0.001, 20.0] 1
(20.0, 40.0] 0
(40.0, 60.0] 0
(60.0, 80.0] 0
(80.0, 100.0] 0
3 (20.0, 40.0] 2
(-0.001, 20.0] 0
(40.0, 60.0] 0
(60.0, 80.0] 0
(80.0, 100.0] 0
4 (20.0, 40.0] 3
(-0.001, 20.0] 0
(40.0, 60.0] 0
(60.0, 80.0] 0
(80.0, 100.0] 0
Name: score, dtype: int64
最佳答案
这是保持索引完整性的另一种方法。
d.groupby('key')['score'].apply(pd.Series.value_counts, bins=[0,20,40,60,80,100])
key
0 (80.0, 100.0] 1
(-0.001, 20.0] 1
(60.0, 80.0] 0
(40.0, 60.0] 0
(20.0, 40.0] 0
1 (80.0, 100.0] 2
(60.0, 80.0] 0
(40.0, 60.0] 0
(20.0, 40.0] 0
(-0.001, 20.0] 0
2 (-0.001, 20.0] 1
(80.0, 100.0] 0
(60.0, 80.0] 0
(40.0, 60.0] 0
(20.0, 40.0] 0
3 (80.0, 100.0] 2
(60.0, 80.0] 0
(40.0, 60.0] 0
(20.0, 40.0] 0
(-0.001, 20.0] 0
4 (80.0, 100.0] 3
(60.0, 80.0] 0
(40.0, 60.0] 0
(20.0, 40.0] 0
(-0.001, 20.0] 0
Name: score, dtype: int64
关于python - 将 bin 应用于 groupby 的 pandas value_counts 产生不正确的结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60553500/
比如我得到的dataframe如下: PassengerId Survived Pclass 0 1 0 3 1 2
我有一个数据框,我想查找每个值出现的次数。当我使用这个命令时 test = df['name'].value_counts() 我得到了正确的结果,但是当我尝试这个 df['occ'] = df['n
我有一个 excel 文件,其中有一列包含多个单词。我正在尝试计算每个单词的出现频率。所以如果我有一个列表 Labels a a b b c c c 输出应该是 c : 3 b : 2 a : 2 我
这个问题在这里已经有了答案: How to count the same values in a dict? [duplicate] (1 个回答) 关闭 3 年前。 我很熟悉如何返回value_c
我正在尝试使用 pandas(v0.23.4 ).当所有类别都存在时,这工作正常: import calendar import random import pandas as pd random.s
我有以下列connect_start 0 2019-01-01 00:01:44 1 2019-01-01 00:02:57 2 2019-01-01 00:24:09 3 2019-
我需要计算大量独立列中的值的计数(例如由 value_counts 表示),这些独立列由一组固定的 2-5 个其他列分组。此练习是对多达数百万行和多达 50-100 列的数据进行数据挖掘的一部分。因此
我正在尝试计算 pandas df 的嵌套列的唯一值,这是 manuel 注释的结果。假设我们有以下 df: df_test = pd.DataFrame(data=dict(x=["A","B","
在pandas里面常用value_counts确认数据出现的频率。 1. Series 情况下: pandas 的 value_counts() 函数可以对Series里面的每个值进行计数并且排
我得到了以下数据框: ae264e3637204a6fb9bb56bc8210ddfd ... 2906b810c7d4411798c6938adc9daaa5 1
我有一个由 df.column.value_counts().sort_index() 生成的 Pandas 系列。 | N Months | Count | |------|------| |
我有以下数据框: import pandas as pd import numpy as np df_Station_Weather = pd.DataFrame(
我创建了一个由两列组成的数据框。我想计算这两列出现的次数。 数据框看起来像 - No Name 1 A 1 A 5 T 9 V Nan M 5 T 1 A 我想使用 valu
我有一个数据框,其中一列是带有以下标签的分类变量:['Short', 'Medium', 'Long', 'Very Long', 'Extremely Long'] .我正在尝试创建一个新的数据框,
这是我的数据框: email title id --------------------------------- balh@blah.com Title a
这是我的数据框: email title id --------------------------------- balh@blah.com Title a
目标 我正在尝试从 value_counts() 开始,为数据框中的每一列自动生成 EDA 报告。 问题 问题是我的函数没有返回任何内容。因此,虽然它确实打印到控制台,但它不会将相同的输出打印到我的文
我进行了一项调查,答案可以是 1-7,例如“绝对不快乐”到“绝对快乐”以及介于两者之间的一切,数据是一个 pandas 系列。对它进行 data.value_counts() 会产生有序表 5.0
我有一个在一组服务器上提出的票证的 pandas 数据框架,如下所示: a b c Users Problem 0 data data data U
自从我开始在 pandas 中使用categorical类型以来,我有一段无法工作的特定代码:(为了方便起见,我将其形成为测试): import pandas as pd import numpy a
我是一名优秀的程序员,十分优秀!