- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
假设我有以下数组:
Input = np.array([[[[17.63, 0. , -0.71, 29.03],
[17.63, -0.09, 0.71, 56.12],
[ 0.17, 1.24, -2.04, 18.49],
[ 1.41, -0.8 , 0.51, 11.85],
[ 0.61, -0.29, 0.15, 36.75]]],
[[[ 0.32, -0.14, 0.39, 24.52],
[ 0.18, 0.25, -0.38, 18.08],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0.43, 0. , 0.3 , 0. ]]],
[[[ 0.75, -0.38, 0.65, 19.51],
[ 0.37, 0.27, 0.52, 24.27],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ]]]])
Input.shape
(3, 1, 5, 4)
与此 Input
数组一起是所有输入的相应 Label
数组,因此:
Label = np.array([0, 1, 2])
Label.shape
(3,)
我需要一些方法来检查 Input
的所有嵌套数组,以仅选择具有足够数据点的数组。
我的意思是我想要一种方法来消除(或者我应该说删除)最后 3 行的条目全为零的所有数组。在执行此操作的同时,消除该数组的相应 Label
。
预期输出:
Input_filtered
array([[[[17.63, 0. , -0.71, 29.03],
[17.63, -0.09, 0.71, 56.12],
[ 0.17, 1.24, -2.04, 18.49],
[ 1.41, -0.8 , 0.51, 11.85],
[ 0.61, -0.29, 0.15, 36.75]]],
[[[ 0.32, -0.14, 0.39, 24.52],
[ 0.18, 0.25, -0.38, 18.08],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0.43, 0. , 0.3 , 0. ]]]])
Label_filtered
array([0, 1])
我需要什么技巧?
最佳答案
您应该只能使用矢量化 numpy 命令来执行此操作。
filter_ = np.any(Input[:, :, -3:], axis=(1, 2, 3))
labels_filtered = Label[filter_]
inputs_filtered = Input[[filter_]]
对于您提供的示例集,与 anon01 的解决方案相比,每个循环产生 4.95 µs ± 9.69 ns(每个循环 100000 个循环),而 anon01 的解决方案每个循环产生 17.1 µs ± 111 ns(每个循环 100000 个循环)。改进应该在更大的阵列上更加显着。
如果您的数据具有不同的维度,您可以更改轴参数。对于任意数量的轴,它可能如下所示:
filter_ = np.any(Input[:, :, -3:], axis=tuple(range(1, Input.ndim)))
关于python - ndarrays的条件过滤,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/63402552/
在这个例子中,我有一个一维 ndarray 列表,长度为 9,列表有 9 个元素,每个元素有 shape=(2048,) ,所以完全9 * (2048,) , 我得到这些 ndarray来自 mxne
Python/NumPy 中的三种“全部”方法有什么区别?性能差异的原因是什么? ndarray.all() 是否总是三者中最快的? 这是我运行的计时测试: In [59]: a = np.full(
我似乎在 this 中遇到了 XY 问题关于如何判断数组是否共享相同内存的问题。我检查的方式是错误的,我不知道为什么。 举几个例子 test = np.ones((3,3)) test2 = np.a
我在使用 mxnet 进行基本 IO 方面遇到问题。我正在尝试使用 mxnet.io.NDArrayIter 读取内存数据集以在 mxnet 中进行训练。我有下面的代码(为了简洁而精简),它预处理代码
首先,这不是作业问题;而是作业问题。它是与我的工作相关的实际问题的抽象。我真的很感谢所有的意见! 我需要运行类似于下面的计算,按顺序运行数万次,它的计算时间显着影响我的模拟的总持续时间: 在这个抽象中
这个问题在这里已经有了答案: Index multidimensional array with index array (1 个回答) 关闭 2 年前。 我想根据一些坐标从 src ndarray
因此 numpy ndarray 非常方便,因为您只需为任何一维函数 f 和任何 ndarray A 输入 f(A) 即可,它将按元素应用 f。有人告诉我,这也是将函数应用于 ndarray 并避免
我有一个 ndarray 字符串。我想将它转换回 ndarray。我尝试了 newval = np.fromstring(val, dtype=float) 。但它给出了ValueError:字符串大
我正在 python/numpy 中做一些机器学习工作,其中我想用一维 ndarray 索引一个二维 ndarray,这样我就可以得到一个带有索引值的一维数组。 我让它与一些丑陋的代码一起工作,我想知
我想根据某些维度的索引位置数组提取 numpy ndarray 的一部分。让我用一个例子来说明这一点 示例数据 dummy = np.random.rand(5,2,100) X = np.array
这个问题在这里已经有了答案: Find the row indexes of several values in a numpy array (8 个答案) 关闭 2 年前。 我有 a = np.a
我想提取 numpy.ndarray 的第一个轴成为numpy.ndarray的列表. 例如,arr_A包含形状为 (3, 100, 200) 的 numpy ndarray,它将转换为形状为 (10
我一直在尝试用 ndarrays 的 numpy ndarray 转换数组数组。 这是我的数据类型: dt = 'i8,i8,i8,i8,i8,i8,i8,i8,i8,i8,i8,i8,i8,f8,i
我目前正在研究一种可以拆分 numpy.ndarray 的方法进入给定数量的子阵列,只要该数量小于窗口移动的轴。 示例: 给定一个形状为 (15, 40, 3) 的 numpy.ndarray 我想分
我用 arcpy 模块创建了一个 NumPy 结构化数组(称为 arr): arr = arcpy.da.FeatureClassToNumPyArray('MPtest','SHAPE@XYZ',e
是否可以将一个 numpy 数组的特定行的引用存储在另一个 numpy 数组中? 我有一个二维节点数组,例如 nodes = np.array([[1, 2], [2, 3], [3, 4], [4,
我有两个长度相同的 pandas 系列,如下所示: S1 = 0 -0.483415 1 -0.514082 2 -0.515724 3 -0.519375 4
当使用 numpy 时,假设我有一个任意的、以前创建的名为 my_ndarray 的 ndarray。如果可能的话,我希望能够执行以下操作...... my_bytes = my_ndarray.to
我在尝试使用 numpy 打乱多维数组时遇到问题。可以使用以下代码重现该问题: import numpy as np s=(300000, 3000) n=s[0] print ("Allocate"
当您调用 DataFrame.to_numpy() 时,pandas 将找到可以容纳 DataFrame 中所有数据类型的 NumPy 数据类型。但是如何进行反向操作呢? 我有一个“numpy.nda
我是一名优秀的程序员,十分优秀!