gpt4 book ai didi

python-3.x - 模块 'tensorflow' 没有属性 'random_uniform'

转载 作者:行者123 更新时间:2023-12-03 16:15:32 26 4
gpt4 key购买 nike

我尝试执行一些深度学习应用程序并得到一个模块 'tensorflow' has no attribute 'random_uniform' 错误。在 CPU 上,代码运行良好,但速度非常慢。为了在 GPU 上运行代码,我需要更改一些定义。下面是我的代码。有任何想法吗?

def CapsNet(input_shape, n_class, routings):

x = tf.keras.layers.Input(shape=input_shape)

# Layer 1: Just a conventional Conv2D layer
conv1 = tf.keras.layers.Convolution2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)

# Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]
primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')

# Layer 3: Capsule layer. Routing algorithm works here.
digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,
name='digitcaps')(primarycaps)

# Layer 4: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.
# If using tensorflow, this will not be necessary. :)
out_caps = Length(name='capsnet')(digitcaps)

# Decoder network.
y = tf.keras.layers.Input(shape=(n_class,))
masked_by_y = Mask()([digitcaps, y]) # The true label is used to mask the output of capsule layer. For training
masked = Mask()(digitcaps) # Mask using the capsule with maximal length. For prediction

# Shared Decoder model in training and prediction
decoder = tf.keras.models.Sequential(name='decoder')
decoder.add(tf.keras.layers.Dense(512, activation='relu', input_dim=16*n_class))
decoder.add(tf.keras.layers.Dense(1024, activation='relu'))
decoder.add(tf.keras.layers.Dense(np.prod(input_shape), activation='sigmoid'))
decoder.add(tf.keras.layers.Reshape(target_shape=input_shape, name='out_recon'))

# Models for training and evaluation (prediction)
train_model = tf.keras.models.Model([x, y], [out_caps, decoder(masked_by_y)])
eval_model = tf.keras.models.Model(x, [out_caps, decoder(masked)])

# manipulate model
noise = tf.keras.layers.Input(shape=(n_class, 16))
noised_digitcaps = tf.keras.layers.Add()([digitcaps, noise])
masked_noised_y = Mask()([noised_digitcaps, y])
manipulate_model = tf.keras.models.Model([x, y, noise], decoder(masked_noised_y))
return train_model, eval_model, manipulate_model


def margin_loss(y_true, y_pred):

L = y_true * K.square(K.maximum(0., 0.9 - y_pred)) + \
0.5 * (1 - y_true) * K.square(K.maximum(0., y_pred - 0.1))

return K.mean(K.sum(L, 1))

model, eval_model, manipulate_model = CapsNet(input_shape=train_x_temp.shape[1:], n_class=len(np.unique(np.argmax(train_y, 1))), routings=3)

最佳答案

问题在于您的tenserflow安装。确切地说,您的 python tensorflow 库。确保您正确地重新安装了软件包,使用 anaconda 您需要以管理员权限安装它。
或者你有最新版本,那么你需要添加喜欢

tf.random.uniform(
有关详细信息,请参阅文档: https://www.tensorflow.org/api_docs/python/tf/random/uniform

关于python-3.x - 模块 'tensorflow' 没有属性 'random_uniform',我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60333293/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com