gpt4 book ai didi

r - 环通环通数据帧 : How to improve performance on loop that calculates the result based on another loop through the dataset

转载 作者:行者123 更新时间:2023-12-03 16:12:49 25 4
gpt4 key购买 nike

我需要处理一个包含百万条目的庞大数据集,格式如下:

表:访问

|----------------|--------------|------------|
| PERSON_ID | DATE | #Clicks |
|----------------|--------------|------------|
| 1 | 2017-05-04 | 4 |
| 1 | 2018-05-04 | 1 |
| 1 | 2016-02-04 | 5 |
| 1 | 2018-05-06 | 7 |
| 2 | 2018-05-04 | 8 |
| 2 | 2018-05-16 | 1 |
| 2 | 2018-01-04 | 1 |
| 2 | 2018-02-04 | 2 |
| ... | ... | ... |
|----------------|--------------|------------|

我想计算每天 + 30 天的点击次数。

数据
N=2,000,000
人=15,000

迭代每个人大约需要 1 秒钟,这很慢。
任何关于如何调整代码的建议将不胜感激。

我已经尝试使用 apply/lapply 但没有取得巨大成功。

代码示例:
图书馆(润滑);
#Initial Data Set
visits <- data.frame(person_id=c(1,1,1,1,2,2,2,2),
date=c(ymd("2017-05-04"),ymd("2018-05-04"),ymd("2016-02-04"),ymd("2018-05-06"),ymd("2018-05-04"),ymd("2018-05-16"),ymd("2018-01-04"),ymd("2018-02-04")),
clicks=c(4,1,5,7,8,1,1,2),
clicks_30days=0)

unique_visitors <- unique(visits$person_id)
#For Each Person
for(person_id in unique_visitors)
{
#Subset person's records and order the, descending
person_visits <- visits[visits$person_id == person_id,]
person_visits <- person_visits[order(person_visits$date),]

#For each visit count the # of clicks of the visit + all visits within visit's date + 30 days
for(i in 1:nrow(person_visits))
{
search_interval <- interval( person_visits$date[i] , person_visits$date[i]+days(30))

#####This is the interesting codeline#####
calc_result <- sum(person_visits$clicks[person_visits$date %within% search_interval])**
##########################################

#save the clicks + 30 days
visits[rownames(person_visits)[i],"clicks_30days"] <- calc_result
}

}

任何比这更快的东西真的很感激。

最佳答案

一个 data.table使用非对等连接的方法:

library(data.table)
setDT(visits)[, clicks_30days :=
visits[.(person_id=person_id, start=date, end=date+30L),
on=.(person_id, date>=start, date<=end), sum(clicks), by=.EACHI]$V1
]

输出:
   person_id       date clicks clicks_30days
1: 1 2017-05-04 4 4
2: 1 2018-05-04 1 8
3: 1 2016-02-04 5 5
4: 1 2018-05-06 7 7
5: 2 2018-05-04 8 9
6: 2 2018-05-16 1 1
7: 2 2018-01-04 1 1
8: 2 2018-02-04 2 2

计时码:
library(data.table)
set.seed(0L)
npers <- 15e3L
ndates <- 150L
visits <- data.frame(person_id=rep(1L:npers, each=ndates),
date=sample(seq(Sys.Date()-5L*365L, Sys.Date(), by="1 day"), npers*ndates, TRUE),
clicks=sample(10, npers*ndates, TRUE))
vi <- visits

mtd0 <- function() {
visits$person_id <- as.integer(visits$person_id) # faster for integers
unique_visitors <- unique(visits$person_id)
# create columns as vectors (accessing elements in loop will be fast)
r <- visits$clicks_30days2 <- 0 # result vector
j <- 1L
person_id <- visits$person_id
CL <- visits$clicks
DATE_as_int <- as.integer(visits$date) # convert dates to integers
for (id in unique_visitors){
x <- person_id == id # indicates current person
dates <- DATE_as_int[x] # take dates of this person
clicks <- CL[x] # clicks of this person
for (i in 1:length(dates)) {
i_date <- dates[i] # take i-th date
ii <- i_date <= dates & dates <= i_date + 30 # test interval
# r[x][i] <- sum(clicks[ii]) # sum
r[j] <- sum(clicks[ii]) # faster using one index
j <- j + 1L
}
}
visits$clicks_30days2 <- r # assigne to results
visits
}

mtd1 <- function() {
setDT(vi)[, clicks_30days :=
vi[.(person_id=person_id, start=date, end=date+30L),
on=.(person_id, date>=start, date<=end), sum(clicks), by=.EACHI]$V1
]
}

library(microbenchmark)
microbenchmark(mtd0(), mtd1(), times=3L)

时间:
Unit: seconds
expr min lq mean median uq max neval cld
mtd0() 144.847468 145.339189 146.358507 145.830910 147.114026 148.397141 3 b
mtd1() 2.367768 2.398254 2.445058 2.428741 2.483703 2.538665 3 a

关于r - 环通环通数据帧 : How to improve performance on loop that calculates the result based on another loop through the dataset,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/56078313/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com