- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
以下代码用于使用 Tensorflow 和 Keras 使用 CNN 模型进行疾病检测。出于某种原因,我不断收到错误消息。
这是一个带有参数“输入”的类型错误。我不明白为什么会引发此错误。
这是我的代码:
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np # linear algebra
import pandas as pd # data processing CSV file
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
import cv2
import matplotlib.pyplot as plt
import seaborn as sns # seaborn is a data visualization library for python graphs
from PIL import Image
import os #file path interacting with operating system
thisFolder = os.path.dirname(os.path.realpath(__file__))
print(thisFolder)
print(tf.__version__)
infected = os.listdir(thisFolder + '/cell_images/cell_images/Parasitized/')
uninfected = os.listdir(thisFolder +'/cell_images/cell_images/Uninfected/')
data = []
labels = []
for i in infected:
try:
image = cv2.imread(thisFolder + "/cell_images/cell_images/Parasitized/"+i)
image_array = Image.fromarray(image , 'RGB')
resize_img = image_array.resize((50 , 50))
rotated45 = resize_img.rotate(45)
rotated75 = resize_img.rotate(75)
blur = cv2.blur(np.array(resize_img) ,(10, 10))
data.append(np.array(resize_img))
data.append(np.array(rotated45))
data.append(np.array(rotated75))
data.append(np.array(blur))
labels.append(1)
labels.append(1)
labels.append(1)
labels.append(1)
except AttributeError:
print('')
for u in uninfected:
try:
image = cv2.imread("../input/cell_images/cell_images/Uninfected/"+u)
image_array = Image.fromarray(image , 'RGB')
resize_img = image_array.resize((50 , 50))
rotated45 = resize_img.rotate(45)
rotated75 = resize_img.rotate(75)
data.append(np.array(resize_img))
data.append(np.array(rotated45))
data.append(np.array(rotated75))
labels.append(0)
labels.append(0)
labels.append(0)
except AttributeError:
print('')
cells = np.array(data)
labels = np.array(labels)
np.save('Cells' , cells)
np.save('Labels' , labels)
print('Cells : {} | labels : {}'.format(cells.shape , labels.shape))
# plt.figure(1 , figsize = (15, 9)) # all graphs and displays
n = 0
for i in range(49):
n += 1
r = np.random.randint(0 , cells.shape[0] , 1)
plt.subplot(7 , 7, n)
plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
plt.imshow(cells[r[0]])
plt.title('{} : {}'.format('Infected' if labels[r[0]] == 1 else 'Uninfected', labels[r[0]]))
plt.xticks([]) , plt.yticks([])
plt.figure(1, figsize = (15 , 7))
plt.subplot(1 , 2 , 1)
plt.imshow(cells[0])
plt.title('Infected Cell')
plt.xticks([]) , plt.yticks([])
n = np.arange(cells.shape[0])
np.random.shuffle(n)
cells = cells[n]
labels = labels[n]
cells = cells.astype(np.float32)
labels = labels.astype(np.int32)
cells = cells/255
from sklearn.model_selection import train_test_split
train_x , x , train_y , y = train_test_split(cells , labels ,
test_size = 0.2 ,
random_state = 111)
eval_x , test_x , eval_y , test_y = train_test_split(x , y ,
test_size = 0.5 ,
random_state = 111)
plt.figure(1 , figsize = (15 ,5))
n = 0
for z , j in zip([train_y , eval_y , test_y] , ['train labels','eval labels','test labels']):
n += 1
plt.subplot(1 , 3 , n)
sns.countplot(x = z )
plt.title(j)
# plt.show()
print('train data shape {} ,eval data shape {} , test data shape {}'.format(train_x.shape,
eval_x.shape ,
test_x.shape))
from tensorflow.python.framework import ops
ops.reset_default_graph()
def cnn_model_fn(features , labels , mode):
input_layers = tf.reshape(features['x'] , [-1 , 50 , 50 ,3])
conv1 = tf.compat.v1.layers.Conv2D(
inputs = input_layers ,
filters = 50 ,
kernel_size = [7 , 7],
padding = 'same',
activation = tf.nn.relu
)
conv2 = tf.layers.conv2d(
inputs = conv1,
filters = 90,
kernel_size = [3 , 3],
padding = 'valid',
activation = tf.nn.relu
)
conv3 = tf.layers.conv2d(
inputs = conv2 ,
filters = 10,
kernel_size = [5 , 5],
padding = 'same',
activation = tf.nn.relu
)
pool1 = tf.layers.max_pooling2d(inputs = conv3 , pool_size = [2 , 2] ,
strides = 2 )
conv4 = tf.layers.conv2d(
inputs = pool1 ,
filters = 5,
kernel_size = [3 , 3],
padding = 'same',
activation = tf.nn.relu
)
pool2 = tf.layers.max_pooling2d(inputs = conv4 , pool_size = [2 , 2] ,
strides = 2 , padding = 'same')
pool2_flatten = tf.layers.flatten(pool2)
fc1 = tf.layers.dense(
inputs = pool2_flatten,
units = 2000,
activation = tf.nn.relu
)
fc2 = tf.layers.dense(
inputs = fc1,
units = 1000,
activation = tf.nn.relu
)
fc3 = tf.layers.dense(
inputs = fc2 ,
units = 500 ,
activation = tf.nn.relu
)
logits = tf.layers.dense(
inputs = fc3 ,
units = 2
)
predictions = {
'classes': tf.argmax(input = logits , axis = 1),
'probabilities': tf.nn.softmax(logits , name = 'softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode = mode ,
predictions = predictions)
loss = tf.losses.sparse_softmax_cross_entropy(labels = labels ,
logits = logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.001)
train_op = optimizer.minimize(loss = loss ,
global_step = tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode = mode ,
loss = loss ,
train_op = train_op
)
eval_metric_op = {'accuracy' : tf.metrics.accuracy(labels = labels ,
predictions = predictions['classes'])}
logging_hook = tf.train.LoggingTensorHook(
tensors = tensors_to_log , every_n_iter = 50
)
return tf.estimator.EstimatorSpec(mode = mode ,
loss = loss ,
eval_metric_ops = eval_metric_op)
# Checkpoint saving training values
malaria_detector = tf.estimator.Estimator(model_fn = cnn_model_fn ,
model_dir = '/tmp/modelchkpt')
tensors_to_log = {'probabilities':'softmax_tensor'}
logging_hook = tf.estimator.LoggingTensorHook(
tensors = tensors_to_log , every_n_iter = 50
)
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x = {'x': train_x},
y = train_y,
batch_size = 100 ,
num_epochs = None ,
shuffle = True
)
malaria_detector.train(input_fn = train_input_fn , steps = 1 , hooks = [logging_hook])
malaria_detector.train(input_fn = train_input_fn , steps = 10000)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x = {'x': eval_x},
y = eval_y ,
num_epochs = 1 ,
shuffle = False
)
eval_results = malaria_detector.evaluate(input_fn = eval_input_fn)
print(eval_results)
pred_input_fn = tf.estimator.inputs.numpy_input_fn(
x = {'x' : test_x},
y = test_y,
num_epochs = 1,
shuffle = False
)
y_pred = malaria_detector.predict(input_fn = pred_input_fn)
classes = [p['classes'] for p in y_pred]
from sklearn.metrics import confusion_matrix , classification_report , accuracy_score
print('{} \n{} \n{}'.format(confusion_matrix(test_y , classes) ,
classification_report(test_y , classes) ,
accuracy_score(test_y , classes)))
plt.figure(1 , figsize = (15 , 9))
n = 0
for i in range(49):
n += 1
r = np.random.randint( 0 , test_x.shape[0] , 1)
plt.subplot(7 , 7 , n)
plt.subplots_adjust(hspace = 0.5 , wspace = 0.5)
plt.imshow(test_x[r[0]])
plt.title('true {} : pred {}'.format(test_y[r[0]] , classes[r[0]]) )
plt.xticks([]) , plt.yticks([])
plt.show()
print("done")
File "CNN.py", line 240, in <module>
malaria_detector.train(input_fn = train_input_fn , steps = 1 , hooks = [logging_hook])
File "/usr/local/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 374, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/usr/local/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1164, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/usr/local/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1194, in _train_model_default
features, labels, ModeKeys.TRAIN, self.config)
File "/usr/local/lib/python2.7/site-packages/tensorflow_estimator/python/estimator/estimator.py", line 1152, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "CNN.py", line 136, in cnn_model_fn
activation = tf.nn.relu
File "/usr/local/lib/python2.7/site-packages/tensorflow_core/python/layers/convolutional.py", line 314, in __init__
name=name, **kwargs)
File "/usr/local/lib/python2.7/site-packages/tensorflow_core/python/keras/layers/convolutional.py", line 527, in __init__
**kwargs)
File "/usr/local/lib/python2.7/site-packages/tensorflow_core/python/keras/layers/convolutional.py", line 122, in __init__
**kwargs)
File "/usr/local/lib/python2.7/site-packages/tensorflow_core/python/layers/base.py", line 213, in __init__
**kwargs)
File "/usr/local/lib/python2.7/site-packages/tensorflow_core/python/training/tracking/base.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "/usr/local/lib/python2.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py", line 186, in __init__
generic_utils.validate_kwargs(kwargs, allowed_kwargs)
File "/usr/local/lib/python2.7/site-packages/tensorflow_core/python/keras/utils/generic_utils.py", line 718, in validate_kwargs
raise TypeError(error_message, kwarg)
TypeError: ('Keyword argument not understood:', 'inputs')
TypeError
?
最佳答案
您询问的错误( TypeError: ('Keyword argument not understood:', 'inputs')
)是由于您将 conv2d
大写而引起的函数在你的第一个卷积层。更改以下内容:
conv1 = tf.compat.v1.layers.Conv2D(
inputs = input_layers ,
filters = 50 ,
kernel_size = [7 , 7],
padding = 'same',
activation = tf.nn.relu
)
conv1 = tf.compat.v1.layers.conv2d(
inputs = input_layers ,
filters = 50 ,
kernel_size = [7 , 7],
padding = 'same',
activation = tf.nn.relu
)
关于python - 类型错误: ('Keyword argument not understood:' , 'inputs' ),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60690327/
import csv import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt dates = []
我在 ANTLRWorks 1.4 中有以下语法。我正在考虑在文本冒险游戏创建器中实现解析器的想法,其中用户将为他的游戏指定各种允许的命令。 grammar test; parse :
我有一个 .dat 文件,我首先想将其转换为 .csv 文件,然后根据时间绘制一些行,我的脚本如下: import pandas as pd import numpy as np from sys i
python 出现SyntaxError: non-keyword arg after keyword arg错误解决办法 前言:
我有一个我无法理解的问题,因此在删除按钮中,尝试在创建按钮后将其删除的地方,出现以下错误: Delete=Button(root,text='Delete',command=lambda : S.pa
我想将某个函数作为线程运行,但我得到了 SyntaxError: non-keyword arg after keyword arg 我不明白为什么: #!/usr/bin/env python im
我试图在 scrappy 中抓取多个页面,我的函数确实返回第一个起始网址,但我无法设法使蜘蛛的规则生效。 这是我到目前为止所拥有的: import scrapy from scrapy.contrib
我正在使用 emeditor,我试图从法语维基百科转储 .xml 文件(20GB,3.38 亿行,总共 480 万篇文章)中分离出大约 200 万篇包含 keyword3 的文章。我想将文本包含在 2
发布表如下所示: publications ============ id title etc ... 关键字表如下所示: keywords ======== id name etc ... keyw
我有这个功能: def crypting(self, client, access_token, client_id, client_secret, oauth_scope, redirect_uri
我正在学习 Rails,但在以下代码中出现语法错误 unexpected keyword else, expected keyword end,我不知道为什么。
我正在一个网站上工作,我必须在数据库中搜索根域上/之后的字符串。我在文档中找不到任何有关它的信息。我正在尝试使其与 Iron Router 一起使用,但任何其他建议都会起作用。 感谢您的帮助! 编辑:
我刚刚找到有关 apache solr 的信息,并且在我成功安装了带有 Tomcat 的 apache Solr 之后。然后我开始使用 Apache Solr 进行搜索。 但我对 Apache Sol
我是 Angular JS 新手。我无法弄清楚过滤器如何仅对对象中的名称起作用,而不是对对象中的电话键起作用。就好像我们在 ng-model 中仅使用关键字一样,它将过滤范围中定义的对象中的名称和电话
当我运行以下代码行时,我试图将按钮按下绑定(bind)到 Tkinter 中的函数 get = Button(root, lambda: ChangeColour(boxes[1][2], boxes
response = requests.post("http://api.bf3stats.com/pc/player/", data = player, opt) 在 python IDLE 中运行
这是我正在操作的更新查询。此处错误“set data = :updateValue”,数据是 Dynamo DB 的保留关键字。我想我应该在这里使用 update ExpressionAttribut
根据维基百科,二元运算符 ?:是 colloquially referred to as the Elvis operator due to its resemblance to an emotico
我知道 AND 词定义了二进制 and ...但什么定义了逻辑and ? 最佳答案 同一个字,AND , 也用于逻辑与。但是这两个输入值要AND推荐为格式良好的标志 ; 真和 假 由两个值表示,位全部
反引号运算符的固定性是什么? 例如在 Real World Haskell 的这段代码中: ghci> (1+) `fmap` [1,2,3] ++ [4,5,6] [2,3,4,4,5,6] 很明显
我是一名优秀的程序员,十分优秀!