gpt4 book ai didi

python - 如何在 Jupyter 笔记本中获得交互式 Bokeh

转载 作者:行者123 更新时间:2023-12-03 16:09:13 24 4
gpt4 key购买 nike

我正准备使用 Bokeh 来实现我编写的一些 python 模型的交互式在线实现。

第 1 步是了解一些基本的交互式示例,但我无法在 Jupyter 笔记本中交互式运行介绍性示例。我希望有人能纠正我对什么是 bokeh 自己的示例代码的复制粘贴的误解。

我知道 Bokeh 文档并不完美(我修复了对 bokeh.plotting.show 而不是 io.show 的过时引用),但我认为我使用的基本结构应该接近正确。

代码基于:
https://github.com/bokeh/bokeh/blob/master/examples/app/sliders.py

https://docs.bokeh.org/en/latest/docs/user_guide/notebook.html

############ START BOILERPLATE ############
#### Interactivity -- BOKEH
import bokeh.plotting.figure as bk_figure
from bokeh.io import curdoc, show
from bokeh.layouts import row, widgetbox
from bokeh.models import ColumnDataSource
from bokeh.models.widgets import Slider, TextInput
from bokeh.io import output_notebook # enables plot interface in J notebook
# init bokeh
output_notebook()
############ END BOILERPLATE ############

# Set up data
N = 200
x = np.linspace(0, 4*np.pi, N)
y = np.sin(x)
source = ColumnDataSource(data=dict(x=x, y=y))

# Set up plot
plot = bk_figure(plot_height=400, plot_width=400, title="my sine wave",
tools="crosshair,pan,reset,save,wheel_zoom",
x_range=[0, 4*np.pi], y_range=[-2.5, 2.5])

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

# Set up widgets
text = TextInput(title="title", value='my sine wave')
offset = Slider(title="offset", value=0.0, start=-5.0, end=5.0, step=0.1)
amplitude = Slider(title="amplitude", value=1.0, start=-5.0, end=5.0, step=0.1)
phase = Slider(title="phase", value=0.0, start=0.0, end=2*np.pi)
freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1, step=0.1)

# Set up callbacks
def update_title(attrname, old, new):
plot.title.text = text.value

text.on_change('value', update_title)

def update_data(attrname, old, new):
# Get the current slider values
a = amplitude.value
b = offset.value
w = phase.value
k = freq.value

# Generate the new curve
x = np.linspace(0, 4*np.pi, N)
y = a*np.sin(k*x + w) + b

source.data = dict(x=x, y=y)
### I thought I might need a show() here, but it doesn't make a difference if I add one
# show(layout)

for w in [offset, amplitude, phase, freq]:
w.on_change('value', update_data)


# Set up layouts and add to document
inputs = widgetbox(text, offset, amplitude, phase, freq)
layout = row(plot,
widgetbox(text, offset, amplitude, phase, freq))
curdoc().add_root(row(inputs, layout, width=800))
curdoc().title = "Sliders"

show(layout)

我生成了一个如下图,但是当 slider 移动时该图没有更新(也没有更新标题文本时)
The static plot, teasing us with its sliders

非常感谢您的任何建议。

PS。我试图让这段代码尽可能接近我可以在服务器上用 .py 文件实现的东西,从而避免像 push_notebook 这样的特定于 jupyter 的解决方法.

最佳答案

我同意(作为用户)文档在这方面可能会更好。我不得不搜索很多来找到程序,但是当你找到它时,它并不难!我修改了你的代码,你可以在 Jupyter notebook 中运行它。

诀窍是:

from bokeh.application import Application
from bokeh.application.handlers import FunctionHandler
.
.
<your code here>
.
.
#add server-related code inside this modify_doc function
def modify_doc(doc): #use doc as you use curdoc() in bokeh server
doc.add_root(<your_layout>)
doc.on_change(...)
doc.add_periodic_callback(...)


handler = FunctionHandler(modify_doc)
app = Application(handler)
show(app)

以及您的代码的修改版本:
############ START BOILERPLATE ############
#### Interactivity -- BOKEH
import bokeh.plotting.figure as bk_figure
from bokeh.io import curdoc, show
from bokeh.layouts import row, widgetbox
from bokeh.models import ColumnDataSource
from bokeh.models.widgets import Slider, TextInput
from bokeh.io import output_notebook # enables plot interface in J notebook
import numpy as np
# init bokeh

from bokeh.application import Application
from bokeh.application.handlers import FunctionHandler


output_notebook()
############ END BOILERPLATE ############

# Set up data
N = 200
x = np.linspace(0, 4*np.pi, N)
y = np.sin(x)
source = ColumnDataSource(data=dict(x=x, y=y))

# Set up plot
plot = bk_figure(plot_height=400, plot_width=400, title="my sine wave",
tools="crosshair,pan,reset,save,wheel_zoom",
x_range=[0, 4*np.pi], y_range=[-2.5, 2.5])

plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6)

# Set up widgets
text = TextInput(title="title", value='my sine wave')
offset = Slider(title="offset", value=0.0, start=-5.0, end=5.0, step=0.1)
amplitude = Slider(title="amplitude", value=1.0, start=-5.0, end=5.0, step=0.1)
phase = Slider(title="phase", value=0.0, start=0.0, end=2*np.pi)
freq = Slider(title="frequency", value=1.0, start=0.1, end=5.1, step=0.1)

# Set up callbacks
def update_title(attrname, old, new):
plot.title.text = text.value



def update_data(attrname, old, new):
# Get the current slider values
a = amplitude.value
b = offset.value
w = phase.value
k = freq.value

# Generate the new curve
x = np.linspace(0, 4*np.pi, N)
y = a*np.sin(k*x + w) + b

source.data = dict(x=x, y=y)
### I thought I might need a show() here, but it doesn't make a difference if I add one
# show(layout)

for w in [offset, amplitude, phase, freq]:
w.on_change('value', update_data)


# Set up layouts and add to document
inputs = widgetbox(text, offset, amplitude, phase, freq)
layout = row(plot,
widgetbox(text, offset, amplitude, phase, freq))



def modify_doc(doc):
doc.add_root(row(layout, width=800))
doc.title = "Sliders"
text.on_change('value', update_title)


handler = FunctionHandler(modify_doc)
app = Application(handler)
show(app)

关于python - 如何在 Jupyter 笔记本中获得交互式 Bokeh ,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/53217654/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com