- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在尝试使用 TransformedTargetRegressor
在模型管道中运行 GridSearchCV
在它的上面。
这是一个最小的工作示例:
from sklearn.datasets import make_regression
from sklearn.ensemble import RandomForestRegressor
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.compose import TransformedTargetRegressor
X,y = make_regression()
model_pipe = Pipeline([
('model', TransformedTargetRegressor(RandomForestRegressor()))
])
params={'model__n_estimators': [1, 10, 50]}
model = GridSearchCV(model_pipe, param_grid= params)
model.fit(X,y)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-48-828bdf0e7ede> in <module>
17 model = GridSearchCV(model_pipe, param_grid= params)
18
---> 19 model.fit(X,y)
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/model_selection/_search.py in fit(self, X, y, groups, **fit_params)
686 return results
687
--> 688 self._run_search(evaluate_candidates)
689
690 # For multi-metric evaluation, store the best_index_, best_params_ and
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/model_selection/_search.py in _run_search(self, evaluate_candidates)
1147 def _run_search(self, evaluate_candidates):
1148 """Search all candidates in param_grid"""
-> 1149 evaluate_candidates(ParameterGrid(self.param_grid))
1150
1151
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/model_selection/_search.py in evaluate_candidates(candidate_params)
665 for parameters, (train, test)
666 in product(candidate_params,
--> 667 cv.split(X, y, groups)))
668
669 if len(out) < 1:
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/joblib/parallel.py in __call__(self, iterable)
1001 # remaining jobs.
1002 self._iterating = False
-> 1003 if self.dispatch_one_batch(iterator):
1004 self._iterating = self._original_iterator is not None
1005
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/joblib/parallel.py in dispatch_one_batch(self, iterator)
832 return False
833 else:
--> 834 self._dispatch(tasks)
835 return True
836
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/joblib/parallel.py in _dispatch(self, batch)
751 with self._lock:
752 job_idx = len(self._jobs)
--> 753 job = self._backend.apply_async(batch, callback=cb)
754 # A job can complete so quickly than its callback is
755 # called before we get here, causing self._jobs to
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/joblib/_parallel_backends.py in apply_async(self, func, callback)
199 def apply_async(self, func, callback=None):
200 """Schedule a func to be run"""
--> 201 result = ImmediateResult(func)
202 if callback:
203 callback(result)
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/joblib/_parallel_backends.py in __init__(self, batch)
580 # Don't delay the application, to avoid keeping the input
581 # arguments in memory
--> 582 self.results = batch()
583
584 def get(self):
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/joblib/parallel.py in __call__(self)
254 with parallel_backend(self._backend, n_jobs=self._n_jobs):
255 return [func(*args, **kwargs)
--> 256 for func, args, kwargs in self.items]
257
258 def __len__(self):
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/joblib/parallel.py in <listcomp>(.0)
254 with parallel_backend(self._backend, n_jobs=self._n_jobs):
255 return [func(*args, **kwargs)
--> 256 for func, args, kwargs in self.items]
257
258 def __len__(self):
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)
501 train_scores = {}
502 if parameters is not None:
--> 503 estimator.set_params(**parameters)
504
505 start_time = time.time()
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/pipeline.py in set_params(self, **kwargs)
162 self
163 """
--> 164 self._set_params('steps', **kwargs)
165 return self
166
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/utils/metaestimators.py in _set_params(self, attr, **params)
48 self._replace_estimator(attr, name, params.pop(name))
49 # 3. Step parameters and other initialisation arguments
---> 50 super().set_params(**params)
51 return self
52
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/base.py in set_params(self, **params)
231
232 for key, sub_params in nested_params.items():
--> 233 valid_params[key].set_params(**sub_params)
234
235 return self
~/miniconda3/envs/gymbo/lib/python3.6/site-packages/sklearn/base.py in set_params(self, **params)
222 'Check the list of available parameters '
223 'with `estimator.get_params().keys()`.' %
--> 224 (key, self))
225
226 if delim:
ValueError: Invalid parameter n_estimators for estimator TransformedTargetRegressor(check_inverse=True, func=None, inverse_func=None,
regressor=RandomForestRegressor(bootstrap=True,
criterion='mse',
max_depth=None,
max_features='auto',
max_leaf_nodes=None,
min_impurity_decrease=0.0,
min_impurity_split=None,
min_samples_leaf=1,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_estimators='warn',
n_jobs=None,
oob_score=False,
random_state=None,
verbose=0,
warm_start=False),
transformer=None). Check the list of available parameters with `estimator.get_params().keys()`.
TransformedTargetRegressor
时,此模型会运行从管道中,然后通过随机森林。为什么是这样?我如何使用
TransformedTargetRegressor
在我上面显示的管道中?
最佳答案
RandomForestRegressor
存储为 regressor
参数在 TransformedTargetRegressor
.
因此,定义 params
的正确方法为 GridSearchCV
是
params={'model__regressor__n_estimators': [1, 10, 50]}
关于python - 如何在 GridSearchCV 中使用 TransformedTargetRegressor?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/59556305/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!