- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在做一个项目,我需要根据百分比值数组分解一个整数值。
我的结束数组必须包含整数值,数组的总和必须等于初始整数。
下面是一个假的例子。我们有一个具有一些“潜力”的汽车列表,我们需要将这种潜力分配给特定的邮政编码。邮政编码分配由一些售罄信息决定。SELLOUTS_PER_P_CODE
决定了每个邮政编码分配的权重。例如,对于第一辆车( car 1
),p_code_3
的权重很大。和更少的 p_code_2
p_code_1
甚至更少所以分配应该分别为car 1 p_code_1=1
, p_code_2=2
, p_code_3=4
.
Bellow 是问题的数学形式。
在这里,我使用 pyomo 实现了这个公式,但是它没有产生预期的结果。该模型未考虑来自 SELLOUTS_PER_P_CODE
的权重因子
from pyomo.environ import *
from pprint import pprint
def distribute(total, weights):
scale = float(sum(weights.values())) / total
return {k: v / scale for k, v in weights.items()}
Cars = ["car 1", "car 2", "car 3"]
Locations = ["p_code_1", "p_code_2", "p_code_3"]
POTENTIALS = {"car 1": 7, "car 2": 2, "car 3": 14}
SELLOUTS = {"p_code_1": 0.2, "p_code_2": 0.3, "p_code_3": 0.5}
SELLOUTS_PER_P_CODE = {}
for car in Cars:
pot = POTENTIALS[car]
scaled_sellout = distribute(pot, SELLOUTS)
t = {(car, p_code): v for p_code, v in scaled_sellout.items()}
SELLOUTS_PER_P_CODE.update(t)
pprint(SELLOUTS_PER_P_CODE)
model = ConcreteModel(name="Breakdown Potential to Postal Code")
model.Cars = Set(initialize=Cars)
model.Locations = Set(initialize=Locations)
model.a = Param(model.Cars, model.Locations, initialize=SELLOUTS_PER_P_CODE)
model.p = Param(model.Cars, initialize=POTENTIALS)
model.X_pos = Var(model.Cars, model.Locations, within=NonNegativeIntegers)
model.X_neg = Var(model.Cars, model.Locations, within=NonNegativeIntegers)
def objective_rule(model):
return sum(
(model.X_pos[i, j] - model.a[i, j] * model.p[i])
- (model.X_neg[i, j] - model.a[i, j] * model.p[i])
for i in model.Cars
for j in model.Locations
)
model.objective = Objective(rule=objective_rule, sense=minimize)
def sum_maintained_rule(model, i):
return (
sum(model.X_pos[i, j] for j in model.Locations)
+ sum(model.X_neg[i, j] for j in model.Locations)
== model.p[i]
)
model.sum_maintained = Constraint(model.Cars, rule=sum_maintained_rule)
def pyomo_postprocess(options=None, instance=None, results=None):
model.pprint()
if __name__ == "__main__":
opt = SolverFactory("glpk")
results = opt.solve(model)
results.write()
print("\nDisplaying Solution\n" + "-" * 80)
pyomo_postprocess(None, model, results)
X_neg
和
X_pos
用于输出分配。
Displaying Solution
--------------------------------------------------------------------------------
5 Set Declarations
Cars : Dim=0, Dimen=1, Size=3, Domain=None, Ordered=False, Bounds=None
['car 1', 'car 2', 'car 3']
Locations : Dim=0, Dimen=1, Size=3, Domain=None, Ordered=False, Bounds=None
['p_code_1', 'p_code_2', 'p_code_3']
X_neg_index : Dim=0, Dimen=2, Size=9, Domain=None, Ordered=False, Bounds=None
Virtual
X_pos_index : Dim=0, Dimen=2, Size=9, Domain=None, Ordered=False, Bounds=None
Virtual
a_index : Dim=0, Dimen=2, Size=9, Domain=None, Ordered=False, Bounds=None
Virtual
2 Param Declarations
a : Size=9, Index=a_index, Domain=Any, Default=None, Mutable=False
Key : Value
('car 1', 'p_code_1') : 1.4000000000000001
('car 1', 'p_code_2') : 2.1
('car 1', 'p_code_3') : 3.5
('car 2', 'p_code_1') : 0.4
('car 2', 'p_code_2') : 0.6
('car 2', 'p_code_3') : 1.0
('car 3', 'p_code_1') : 2.8000000000000003
('car 3', 'p_code_2') : 4.2
('car 3', 'p_code_3') : 7.0
p : Size=3, Index=Cars, Domain=Any, Default=None, Mutable=False
Key : Value
car 1 : 7
car 2 : 2
car 3 : 14
2 Var Declarations
X_neg : Size=9, Index=X_neg_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
('car 1', 'p_code_1') : 0 : 7.0 : None : False : False : NonNegativeIntegers
('car 1', 'p_code_2') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 1', 'p_code_3') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 2', 'p_code_1') : 0 : 2.0 : None : False : False : NonNegativeIntegers
('car 2', 'p_code_2') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 2', 'p_code_3') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 3', 'p_code_1') : 0 : 14.0 : None : False : False : NonNegativeIntegers
('car 3', 'p_code_2') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 3', 'p_code_3') : 0 : 0.0 : None : False : False : NonNegativeIntegers
X_pos : Size=9, Index=X_pos_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
('car 1', 'p_code_1') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 1', 'p_code_2') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 1', 'p_code_3') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 2', 'p_code_1') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 2', 'p_code_2') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 2', 'p_code_3') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 3', 'p_code_1') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 3', 'p_code_2') : 0 : 0.0 : None : False : False : NonNegativeIntegers
('car 3', 'p_code_3') : 0 : 0.0 : None : False : False : NonNegativeIntegers
1 Objective Declarations
objective : Size=1, Index=None, Active=True
Key : Active : Sense : Expression
None : True : minimize : X_pos[car 1,p_code_1] - 9.8 - (X_neg[car 1,p_code_1] - 9.8) + X_pos[car 1,p_code_2] - 14.700000000000001 - (X_neg[car 1,p_code_2] - 14.700000000000001) + X_pos[car 1,p_code_3] - 24.5 - (X_neg[car 1,p_code_3] - 24.5) + X_pos[car 2,p_code_1] - 0.8 - (X_neg[car 2,p_code_1] - 0.8) + X_pos[car 2,p_code_2] - 1.2 - (X_neg[car 2,p_code_2] - 1.2) + X_pos[car 2,p_code_3] - 2.0 - (X_neg[car 2,p_code_3] - 2.0) + X_pos[car 3,p_code_1] - 39.2 - (X_neg[car 3,p_code_1] - 39.2) + X_pos[car 3,p_code_2] - 58.800000000000004 - (X_neg[car 3,p_code_2] - 58.800000000000004) + X_pos[car 3,p_code_3] - 98.0 - (X_neg[car 3,p_code_3] - 98.0)
1 Constraint Declarations
sum_maintained : Size=3, Index=Cars, Active=True
Key : Lower : Body : Upper : Active
car 1 : 7.0 : X_pos[car 1,p_code_1] + X_pos[car 1,p_code_2] + X_pos[car 1,p_code_3] + X_neg[car 1,p_code_1] + X_neg[car 1,p_code_2] + X_neg[car 1,p_code_3] : 7.0 : True
car 2 : 2.0 : X_pos[car 2,p_code_1] + X_pos[car 2,p_code_2] + X_pos[car 2,p_code_3] + X_neg[car 2,p_code_1] + X_neg[car 2,p_code_2] + X_neg[car 2,p_code_3] : 2.0 : True
car 3 : 14.0 : X_pos[car 3,p_code_1] + X_pos[car 3,p_code_2] + X_pos[car 3,p_code_3] + X_neg[car 3,p_code_1] + X_neg[car 3,p_code_2] + X_neg[car 3,p_code_3] : 14.0 : True
11 Declarations: Cars Locations a_index a p X_pos_index X_pos X_neg_index X_neg objective sum_maintained
最佳答案
从您发布的问题来看,参数“a”应使用“位置”而不是“汽车”和“位置”进行初始化。除此之外,其他一切看起来都不错。
关于python - 将整数值分解为保持总和的整数数组,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/58717585/
我正在尝试在 R 中计算任意 N x J 矩阵 S 的投影矩阵 P: P = S (S'S) ^ -1 S' 我一直在尝试使用以下函数来执行此操作: P 概述 solve 基于一般方阵的 LU 分解
所以我有一个包含数千行的非常旧的文件(我猜是手工生成的),我正试图将它们移动到一个 rdb 中,但是这些行没有转换为列的格式/模式。例如,文件中的行如下所示: blah blahsdfas
这实际上只是一个“最佳实践”问题...... 我发现在开发应用程序时,我经常会得到很多 View 。 将这些 View 分解为几个 View 文件是常见的做法吗?换句话说......而不只是有view
使用以下函数foo()作为简单示例,如果可能的话,我想将...中给出的值分配给两个不同的函数。 foo args(mapply) function (FUN, ..., MoreArgs = NUL
正面案例:可以进入列表 groovy> println GroovySystem.version groovy> final data1 = [[99,2] , [100,4]] groovy> d
省略素数计算方法和因式分解方法的详细信息。 为什么要进行因式分解? 它的应用是什么? 最佳答案 哇,这个线程里有这么多争斗。 具有讽刺意味的是,这个问题有一个主要的有效答案。 因式分解实际上在加密/解
术语“分解不良”和“重构”程序是什么意思?你能举一个简单的例子来理解基本的区别吗? 最佳答案 重构是一种通用技术,可以指代许多任务。它通常意味着清理代码、去除冗余、提高代码质量和可读性。 分解不良代码
我以前有,here ,表明 C++ 函数不容易在汇编中表示。现在我有兴趣以一种或另一种方式阅读它们,因为 Callgrind 是 Valgrind 的一部分,在组装时显示它们已损坏。 所以我想要么破坏
最初,我一直在打开并同时阅读两个文件,内容如下: with open(file1, 'r') as R1: with open(file2, 'r') as R2: ### m
我正在尝试摆脱 标签和标签内的内容使用 beatifulsoup。我去看了文档,似乎是一个非常简单的调用函数。有关该功能的更多信息是 here .这是我到目前为止解析的 html 页面的内容...
给定一个 float ,我想将它分成几个部分的总和,每个部分都有给定的位数。例如,给定 3.1415926535 并要求将其分成以 10 为基数的部分,每部分 4 位数字,它将返回 3.141 + 5
我的 JSF 项目被部署为一个 EAR 文件。它还包括一些 war 文件。我需要 EAR 的分解版本(包括分解的内部 WAR)。 有什么工具可以做到吗? 最佳答案 以编程方式还是手动? EAR 和 W
以下函数不使用行透视进行 LU 分解。 R 中是否有一个现有的函数可以使用行数据进行 LU 分解? > require(Matrix) > expand(lu(matrix(rnorm(16),4,4
关闭。这个问题是opinion-based .它目前不接受答案。 想改进这个问题?更新问题,以便 editing this post 提供事实和引用来回答它. 7年前关闭。 Improve this
我正在使用登记数据进行病假研究。从登记册上,我只得到了每个人的病假开始日期和结束日期。但日期并没有逐年分割。例如,对于人 A,只有开始日期 (1-may-2016) 和结束日期 (14-feb-201
我发现以下 R 代码使用 qr 因式分解无法恢复原始矩阵。我不明白为什么。 a <- matrix(runif(180),ncol=6) a[,c(2,4)] <- 0 b <- qr(a) d <-
我正在尝试检测气候数据时间序列中的异常值,其中一些缺失的观测值。在网上搜索我发现了许多可用的方法。其中,STL 分解似乎很有吸引力,因为它去除了趋势和季节性成分并研究了其余部分。阅读 STL: A S
我想使用 javascript 分解数组中的 VIN,可能使用正则表达式,然后使用某种循环... 以下是读取 VIN 的方法: http://forum.cardekho.com/topic/600-
我正在研究 Databricks 示例。数据框的架构如下所示: > parquetDF.printSchema root |-- department: struct (nullable = true
我正在尝试简化我的代码并将其分解为多个文件。例如,我设法做到了: socket.once("disconnect", disconnectSocket); 然后有一个名为 disconnectSock
我是一名优秀的程序员,十分优秀!