- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我试图用以下代码为我的图像分类器绘制一个混淆矩阵,但我收到一条错误消息:“PrefetchDataset”对象没有属性“类”
Y_pred = model.predict(validation_dataset)
y_pred = np.argmax(Y_pred, axis=1)
print('Confusion Matrix')
print(confusion_matrix(validation_dataset.classes, y_pred)) # ERROR message generated
最佳答案
免责声明:这不适用于混洗数据集。我会尽快更新这个答案。
您可以使用 tf.stack
连接所有数据集值。像这样:
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
为了重现性,假设您有一个数据集、一个神经网络和一个训练循环:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix
data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')
history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)
现在您的模型已经拟合,您可以预测测试集:
y_pred = model.predict(test_dataset)
array([[2.2177568e-05, 3.0841196e-01, 6.9156587e-01],
[4.3539176e-06, 1.2779665e-01, 8.7219906e-01],
[1.0816366e-03, 9.2667454e-01, 7.2243840e-02],
[9.9921310e-01, 7.8686583e-04, 9.8775059e-09]], dtype=float32)
这将是一个
(n_samples, 3)
数组,因为我们正在处理三个类别。我们想要一个
(n_samples, 1)
sklearn.metrics.confusion_matrix
的数组,所以取 argmax:
predicted_categories = tf.argmax(y_pred, axis=1)
<tf.Tensor: shape=(30,), dtype=int64, numpy=
array([2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 2, 0, 2, 1, 2,
1, 0, 2, 0, 1, 2, 1, 0], dtype=int64)>
那么,我们可以把所有的
y
来自预取数据集的值:
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
[<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 2, 2, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 2, 1, 1], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 0, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 0, 1, 2], dtype=int64)>,
<tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 0], dtype=int64)>]
然后,您已准备好获取混淆矩阵:
confusion_matrix(predicted_categories, true_categories)
array([[ 9, 0, 0],
[ 0, 9, 0],
[ 0, 2, 10]], dtype=int64)
(9 + 9 + 10) / 30 = 0.933
是准确率分数。对应于
model.evaluate(test_dataset)
:
8/8 [==============================] - 0s 785us/step - loss: 0.1907 - accuracy: 0.9333
结果也与
sklearn.metrics.classification_report
一致:
precision recall f1-score support
0 1.00 1.00 1.00 8
1 0.82 1.00 0.90 9
2 1.00 0.85 0.92 13
accuracy 0.93 30
macro avg 0.94 0.95 0.94 30
weighted avg 0.95 0.93 0.93 30
这是整个代码:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix
data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')
history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)
y_pred = model.predict(test_dataset)
predicted_categories = tf.argmax(y_pred, axis=1)
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
confusion_matrix(predicted_categories, true_categories)
关于python - 如何在 Tensorflow 中为预取数据集绘制混淆矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64622210/
我正在阅读哈德利的 Advanced R并尝试一些东西。我正在尝试创建一个 lazy闭包函数返回一个带有提供的函数 data.frame在其环境中以及使用 with并且能够在以后提供额外的函数参数。
我有两个 ViewController。初始 ViewController 是输入和存储 URL 的地方。此初始 ViewController 的 viewDidLoad 还应该在应用程序启动时开始加
你是怎么用的 对于应用程序中的 ListView 项也应该在设备 <11 上运行? 由于 activated_state 在 HC 之前不可用,我只能想到两个肮脏的解决方法: 在您的 Activit
我正在为 android (2.1 > 3.1) 编写一个应用程序,我想使用熟悉的做法,即在 Honeycomb 应用程序中使用应用程序图标来进入家庭 Activity ,但是,当我之前运行该 Act
如果搜索的键不存在,我如何覆盖方法 GET 或编写一个将在服务器端执行的新函数返回另一个键值? 示例: 如果关键字“word_1 word_2 word_3 word_4”不存在则搜索关键字“word
对于我的存储库,我使用的是 Git 和 Stash。在 Stash 端,我限制了(只读)对 master 的访问权限,因此任何用户都可以从 master 分支分支以获取功能/分支,但不能直接 merg
如何配置dgrid及其存储以定义渲染行时是否已经选择了行? 例如,如果我的行数据是这样的: { id: 1, name: 'Item Name', selected: true } 我当前
有没有一种方法可以将变量从一个 BeanShell 前/后处理器引用到另一个 BeanShell 处理器(它们在同一个线程组中)? 如果我在 HTTP 请求下的 BeanShell 预处理器中创建了一
问题 我已尝试添加预操作 shell 脚本,这些脚本会根据我正在构建的内容打开/关闭我的 .pch 文件中的某些定义。 但是,在运行构建时,没有任何反应。我不是一个流利的 shell 脚本编写者,所以
我有一个 HTML 字符串用作 jQuery 输入文档。 // the variable html contains the HTML code jQuery( html ).find( 'p' ).
在 Mercurial 中允许 merge 之前有没有办法进行一些检查? 通过将以下内容添加到 ~/.hg/hgrc,我找到了更新前 Hook ,并拥有一个在允许更新之前运行的脚本: [hooks]
总结: 预 Controller Hook 是否在缓存期间执行?是否有任何 Hook 点可以执行? (系统前?) 我应该强调一个事实,即 Hook 不会影响发送到浏览器的内容。这不是问题。 详细版:
我正在使用适用于 android 的 Skobbler Map API,到目前为止它一直非常好。按照官方的“操作方法”,我已经能够将 map 应用到我的应用程序中。比我可以让应用程序下载 map 并离
当我安装bcrypt时我的 hapi js 项目的模块尚未安装,它显示类似 node-pre-gyp install --fallback-to-build 我尝试通过运行来安装; npm i nod
我试图使用此代码的变体: apply plugin: 'java' apply plugin: 'idea' idea.workspace.iws.withXml { provider ->
假设我们有一个 PHP 项目,其依赖项 A 和 B 分别依赖于 PHP 库 X,但版本不同。 通常,人们会使用诸如 composer 之类的 PHP 依赖管理器,它可以通过在与 A 和 B 兼容的版本
这似乎违背了代码块的目的,但我希望能够在代码块中加粗。例如,如果我想将返回行加粗: int main(void) { **return 0;** } 最佳答案 您必须在 HTML 中执行此操作
我们是否应该使用 Huggingface(预)训练一个 BERT 无框模型的小写输入数据?我查看了 Thomas Wolf ( https://github.com/huggingface/trans
我有两个模式: 技能: var mongoose = require("mongoose"); var SkillSchema = new mongoose.Schema({ skill: {
我这里有问题。这适用于 Chrome,但我无法在 IE11 的 index.html 中使用任何动画。当它不想工作时,我会看到一个静态屏幕。同样在 IE 中,消息不会像它应该的那样消失。如果我将 di
我是一名优秀的程序员,十分优秀!