gpt4 book ai didi

python - 如何在 Tensorflow 中为预取数据集绘制混淆矩阵

转载 作者:行者123 更新时间:2023-12-03 15:54:02 25 4
gpt4 key购买 nike

我试图用以下代码为我的图像分类器绘制一个混淆矩阵,但我收到一条错误消息:“PrefetchDataset”对象没有属性“类”

Y_pred = model.predict(validation_dataset)
y_pred = np.argmax(Y_pred, axis=1)

print('Confusion Matrix')
print(confusion_matrix(validation_dataset.classes, y_pred)) # ERROR message generated

最佳答案

免责声明:这不适用于混洗数据集。我会尽快更新这个答案。
您可以使用 tf.stack连接所有数据集值。像这样:

true_categories = tf.concat([y for x, y in test_dataset], axis=0)
为了重现性,假设您有一个数据集、一个神经网络和一个训练循环:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix

data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)

AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)

model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')

history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)
现在您的模型已经拟合,您可以预测测试集:
y_pred = model.predict(test_dataset)
array([[2.2177568e-05, 3.0841196e-01, 6.9156587e-01],
[4.3539176e-06, 1.2779665e-01, 8.7219906e-01],
[1.0816366e-03, 9.2667454e-01, 7.2243840e-02],
[9.9921310e-01, 7.8686583e-04, 9.8775059e-09]], dtype=float32)
这将是一个 (n_samples, 3)数组,因为我们正在处理三个类别。我们想要一个 (n_samples, 1) sklearn.metrics.confusion_matrix 的数组,所以取 argmax:
predicted_categories = tf.argmax(y_pred, axis=1)
<tf.Tensor: shape=(30,), dtype=int64, numpy=
array([2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 2, 0, 2, 1, 2,
1, 0, 2, 0, 1, 2, 1, 0], dtype=int64)>
那么,我们可以把所有的 y来自预取数据集的值:
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
[<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 2, 2, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 2, 1, 1], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 0, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 0, 1, 2], dtype=int64)>,
<tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 0], dtype=int64)>]
然后,您已准备好获取混淆矩阵:
confusion_matrix(predicted_categories, true_categories)
array([[ 9,  0,  0],
[ 0, 9, 0],
[ 0, 2, 10]], dtype=int64)
(9 + 9 + 10) / 30 = 0.933是准确率分数。对应于 model.evaluate(test_dataset) :
8/8 [==============================] - 0s 785us/step - loss: 0.1907 - accuracy: 0.9333
结果也与 sklearn.metrics.classification_report一致:
              precision    recall  f1-score   support
0 1.00 1.00 1.00 8
1 0.82 1.00 0.90 9
2 1.00 0.85 0.92 13
accuracy 0.93 30
macro avg 0.94 0.95 0.94 30
weighted avg 0.95 0.93 0.93 30
这是整个代码:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix

data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)

AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)

model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')

history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)

y_pred = model.predict(test_dataset)

predicted_categories = tf.argmax(y_pred, axis=1)

true_categories = tf.concat([y for x, y in test_dataset], axis=0)

confusion_matrix(predicted_categories, true_categories)

关于python - 如何在 Tensorflow 中为预取数据集绘制混淆矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/64622210/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com