- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我有一个仪器可以通过或失败一系列的三个测试。仪器必须通过所有三个测试才能被视为成功。我如何使用贝叶斯推理来查看基于证据的每个案例通过的概率? (基于依次通过每个过去测试的仪器)。
只看第一次测试 - 我从仪器测试的历史记录中了解到这一点。您还可以看到每个测试的接受范围为 -3% 到 +3%:
我的假设:
**P(H|D) = P(H) P(D|H) / P(D)** Where:
**P(D) = P(D|H)*P(H) + P(D|’H) P(‘H)**
P(H) = P('H) = 0.5 // prob of passing/failing test-A without any information
P(D|H) = 0.84 // prob of passing test-A from historical records
P('D|H) = 0.16 // prob of failing test-A from historical records
P(D) = P(D|H)*P(H) + P(D|’H) P(‘H) = 0.84*0.5 + 0.16*0.5
P(D) = 0.5
最佳答案
所以这里有几件事情需要考虑。首先,使用的先验概率分别为 0.5 和 0.5 是对的,因为这是我们对 进行数学编码的方式。不知道发生了什么,但是您正在显示彼此独立的三个图并编写只有一维的贝叶斯方程,这违反了您的依赖假设。此外,无需在此设置中使用边缘化 P(D) 来获得您所询问的条件概率。
考虑到它在测试 A 和/或测试 B 上的表现,您真正想要的是仪器通过测试 C 的条件概率
如果你只做过测试 A,那么贝叶斯说:
P(C|A) = P(A|C)P(C)/P(A) or P(B|A) = P(A|B)P(B)/P(A)
P(C|A,B) = P(A,B|C)P(C)/P(A,B)
What is my probability of passing the next test given that I have already passed or failed this test?
“Given that the instrument passed (or failed) test 1, what is the chance it will pass test 2 and test 3”
(Number of TestA Outcomes)* (Number of TestB Outcomes)* (Number of TestC Outcomes) = 2*2*2 = 8
In our approach, the number of times that any instrument previously tested passed test A, failed test B, and Passed Test C would be found in ProbabilityHistogram [1,0,1], passing all three would be found in ProbabilityHistogram [1,1,1], failing all three ProbabilityHistogram [0,0,0], etc.
//Define Probability Histogram
double[, ,] ProbHisto = new double[2, 2, 2];// [A Test Outcome, B Test Outcome, C Test Outcome]
//Update Histogram based on historical data.
//pass in how the instrument did on each test as one dataset
void updateProbHisto(bool APassed, bool BPassed, bool CPassed) {
ProbHisto[Convert.ToInt16(APassed), Convert.ToInt16(BPassed), Convert.ToInt16(CPassed)]++;
}
//calculate the conditional probability that test B and test C will Pass given A's test reult
double[] CProb_BCgA(bool ATestResult) {
//Calculate probability of test B and test C success looking only at tests that passed or failed the same way this instrument did given the A test result
double[] rvalue = {0.0,0.0};//P(B|A), P(C|A)
double BPassesGivenA = ProbHisto[Convert.ToInt16(ATestResult),1,0] + ProbHisto[Convert.ToInt16(ATestResult),1,1];
double CPassesGivenA = ProbHisto[Convert.ToInt16(ATestResult),1,1] + ProbHisto[Convert.ToInt16(ATestResult),0,1];
rvalue[0] = BPassesGivenA /(BPassesGivenA+ProbHisto[Convert.ToInt16(ATestResult),0,0] + ProbHisto[Convert.ToInt16(ATestResult),0,1]); // BPasses over BPasses + BFailures
rvalue[1] = CPassesGivenA /(CPassesGivenA+ProbHisto[Convert.ToInt16(ATestResult),0,0] + ProbHisto[Convert.ToInt16(ATestResult),1,0]);// CPasses over CPasses + CFailures
return rvalue;
}
//Calculate the conditional probability that test C will pass looking only at tests that passed or failed the same way this instrument did given the A and B test results
double CProb_CgAB(bool ATestResult, bool BTestResult)
{
//Calculate probability of test C success given A and B test results
double rvalue = 0.0;// P(C|A,B)
double CPassesGivenAB = ProbHisto[Convert.ToInt16(ATestResult),Convert.ToInt16(BTestResult),1];
rvalue= CPassesGivenAB /(CPassesGivenAB + ProbHisto[Convert.ToInt16(ATestResult),Convert.ToInt16(BTestResult),0]);// CPasses over CPasses + CFailures
return rvalue;
}
关于probability - 贝叶斯推理,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31516732/
现在,我正在使用 MALLET 包中的 LDA 主题建模工具对我的文档进行一些主题检测。最初一切都很好,我从中得到了 20 个主题。但是,当我尝试使用该模型推断新文档时,结果有点莫名其妙。 例如,我故
我正在使用 Jersey 在 Scala 中开发 REST web 服务JAX-RS 引用实现,我收到一个奇怪的错误。 我正在尝试创建一个 ContentDisposition对象使用 Content
以下两个用于计算斐波那契数列第 n 项的 Haskell 程序具有截然不同的性能特征: fib1 n = case n of 0 -> 1 1 -> 1 x -> (fib
所以在来自 another question 的评论中,我刚刚看到了这个计算字符串中 L 数量的例子: "hello".count('l'==) 而且够疯狂……它有效。 从完全扩展的版本开始,我们有:
我在 android 上运行训练有素的 yolov2 网络时遇到问题。我正在使用这个项目进行测试 https://github.com/szaza/android-yolo-v2 . 提供的网络工作正
我目前在我的 iOS 应用程序中使用 Tensorflow 的 Swift 版本。我的模型工作正常,但我无法将数据复制到第一个张量中,因此我可以使用神经网络来检测东西。 我咨询了the testsui
我有一个 SSD tflite 检测模型,正在台式计算机上使用 Python 运行。就目前而言,我的下面的脚本将单个图像作为推理的输入,并且运行良好: # Load TFLite model
我所拥有的:在 Tensorflow 中经过训练的递归神经网络。 我想要的:一个可以尽可能快地运行这个网络的移动应用程序(只有推理模式,没有训练)。 我相信有多种方法可以实现我的目标,但我希望您能提供
**我得到了一些让我的函数成为纯通用函数的建议,这可行,但我更愿意将函数限制为仅接受 Base 及其子项。 在创建可以接受可变模板类基类型参数的函数时遇到问题,而该函数实际上将使用从 Base 派生的
我想使用 TF 2.0 在我的 GPU 集群上运行分布式预测。我使用 MirroredStrategy 训练了一个用 Keras 制作的 CNN 并保存了它。我可以加载模型并在其上使用 .predic
实现一个 C++ 代码来加载一个已经训练好的模型然后获取它而不是使用 Python 真的值得吗? 我想知道这一点,因为据我所知,用于 python 的 Tensorflow 是幕后的 C++(对于 n
我将在网站上提供 pytorch 模型(resnet18)。 然而,在 cpu(amd3600) 中进行推理需要 70% 的 cpu 资源。 我不认为服务器(heroku)可以处理这个计算。 有什么方
为了充分利用 CPU/GPU,我运行了多个对不同数据集进行 DNN 推理(前馈)的进程。由于进程在前馈期间分配了 CUDA 内存,因此我收到了 CUDA 内存不足错误。为了缓解这种情况,我添加了 to
你知道用 1 个 GPU tensorflow 对 2 个 python 进程进行推理的优雅方法吗? 假设我有 2 个进程,第一个是分类猫/狗,第二个是分类鸟/飞机,每个进程运行不同的 tensorf
我是 Scala 的初学者,不明白这里发生了什么: 给定: val reverse:Option[MyObject] = ... 并且myObject.isNaire返回 bool 值。 如果我这样做
我正在尝试通过用我常用的语言 Clojure 实现算法 W 来自学 Hindley-Milner 类型推理。我遇到了 let 推理的问题,我不确定我是否做错了什么,或者我期望的结果是否需要算法之外的东
我正在尝试通过用我常用的语言 Clojure 实现算法 W 来自学 Hindley-Milner 类型推理。我遇到了 let 推理的问题,我不确定我是否做错了什么,或者我期望的结果是否需要算法之外的东
我做了一个项目,基本上使用带有 tensorflow 的 googles object detection api。 我所做的只是使用预训练模型进行推理:这意味着实时对象检测,其中输入是网络摄像头的视
我有一台带有多个 GPU 的服务器,我想在 Java 应用程序内的模型推理期间充分利用它们。默认情况下,tensorflow 占用所有可用的 GPU,但仅使用第一个。 我可以想到三个选项来解决这个问题
这个预测时间190ms,应该是cpu版本 昨天修改了个OpenCV DNN支持部署YOLOv5,6.1版本的Python代码,今天重新转换为C 代码了!貌似帧率比之前涨了点!说明C的确是比Python
我是一名优秀的程序员,十分优秀!