- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用 GA Package我的目标是找到 k-means 聚类算法的最佳初始质心位置。我的数据是 TF-IDF 分数中单词的稀疏矩阵,可下载 here.以下是我实现的一些阶段:
0. Libraries and dataset
library(clusterSim) ## for index.DB()
library(GA) ## for ga()
corpus <- read.csv("Corpus_EnglishMalay_tfidf.csv") ## a dataset of 5000 x 1168
1. Binary encoding and generate initial population.
k_min <- 15
initial_population <- function(object) {
## generate a population to turn-on 15 cluster bits
init <- t(replicate(object@popSize, sample(rep(c(1, 0), c(k_min, object@nBits - k_min))), TRUE))
return(init)
}
2. Fitness Function Minimizes Davies-Bouldin (DB) Index. Where I evaluate DBI for each solution generated from
initial_population
.
DBI2 <- function(x) {
## x is a vector of solution of nBits
## exclude first column of corpus
initial_centroid <- corpus[x==1, -1]
cl <- kmeans(corpus[-1], initial_centroid)
dbi <- index.DB(corpus[-1], cl=cl$cluster, centrotypes = "centroids")
score <- -dbi$DB
return(score)
}
3. Running GA. With these settings.
g2<- ga(type = "binary",
fitness = DBI2,
population = initial_population,
selection = ga_rwSelection,
crossover = gabin_spCrossover,
pcrossover = 0.8,
pmutation = 0.1,
popSize = 100,
nBits = nrow(corpus),
seed = 123)
4. The problem. Error in kmeans(corpus[-1], initial_centroid) : initial centers are not distinct`.
1's
将代表初始质心。
kmeans()
检查
code ,我注意到错误是由重复的中心引起的:
if(any(duplicated(centers)))
stop("initial centers are not distinct")
kmeans
功能与
trace
打印出重复的中心。输出:
[1] "206" "520" "564" "1803" "2059" "2163" "2652" "2702" "3195" "3206" "3254" "3362" "3375"
[14] "4063" "4186"
initial_centroids
中显示没有重复我不知道为什么这个错误不断发生。还有什么会导致这个错误吗?
initial centers are not distinct
错误时如此)。
最佳答案
由于问题的性质,遗传算法不太适合优化 k 均值 - 初始化种子相互作用太多,ga 不会比随机抽取所有可能的种子样本更好。
所以我的主要建议是不要在这里使用遗传算法!
如果你坚持,你需要做的是检测错误的参数,然后简单地为错误的初始化返回一个错误的分数,这样它们就不会“存活”。
关于r - K-means:初始中心不明显,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42250899/
入门教程使用内置的梯度下降优化器非常有意义。但是,k均值不仅可以插入梯度下降中。似乎我不得不编写自己的优化程序,但是鉴于TensorFlow原语,我不确定如何执行此操作。 我应该采取什么方法? 最佳答
我想知道 K-Mean 和 K-Means++ 算法之间的区别。如果有人了解 K-Means++ 算法的流程,您能举例说明一下吗?虽然,我了解 K-Mean 算法,但发现如何实现 K-Means++
我有不同的数据帧均值计算值。通常,我想它们应该是一样的。或者有什么区别: daily1 = daily_above_zero['2011-2'].mean() daily1 Out[181]: P_S
我有关于人们每周上类旅行次数的数据。随着行程的距离,我对两个变量之间的关系感兴趣。 (预计频率会随着距离的增加而下降,本质上是一种负相关。)Cor.test 支持这个假设:-0.08993444,p
我了解 k-means 算法步骤。 但是我不确定该算法是否会始终收敛?或者观察总是可以从一个质心切换到另一个质心? 最佳答案 该算法总是收敛(按定义)但 不一定是全局最优 . 算法可能会从质心切换到质
(添加了可重现的示例。) 我对 rnorm 函数有点困惑。 我期待 mean(rnorm(100,mean=0,sd=1))为0;和 sd(rnorm(100,mean=0,sd=1))为 1。但给出
我想计算一个平均值。这是带有示例数据的代码: # sample data Nr <- c(1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
我有一个像这样的数据框: Id F M R 7 1 286 907 12 1 286 907 17 1 186 1271 21 1 296 905 30 1
如果我们将 K-means 和顺序 K-means 方法应用于具有相同初始设置的相同数据集,我们会得到相同的结果吗?解释你的理由。 个人认为答案是否定的,顺序K-means得到的结果取决于数据点的呈现
我想使用 MEAN JavaScript 堆栈,但我注意到有两个不同的堆栈,它们有自己的网站和安装方法:mean.js 和 mean.io。所以我开始问自己这个问题:“我用哪一个?”。 所以为了回答这
似乎有多种方法可以安装 Mean Stack (mean.io) 的所有模块。但是,在 c9.io 中执行此操作的最佳方法是什么?我一直在尝试很多事情,但我似乎并没有全部掌握。 c9.io 有专门的
在开发过程中,我希望加载原始(未聚合).js 文件。 Mean.io 文档说: All javascript within public is automatically aggregated wit
我正在尝试添加 angular-material到 mean.io应用。 在我的自定义包中,我使用 bower 来安装 angular-material,现在我有一个 .../public/asset
我只运行以下三行: df = pd.read_hdf('data.h5') print(df.mean()) print(df['derived_3'].mean()) 第一个 print 列出了每一
k-means++算法有助于原始k-means算法的以下两点: 原始的 k-means 算法在输入大小的 super 多项式的最坏情况下运行时间,而 k-means++ 声称是 O(log k)。 与
这两个字段有什么区别? : 每个请求的时间(平均) 每个请求的时间(平均,跨所有并发请求) 它们每个是如何计算的? 示例输出: Time per request: 3953.446 [ms
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 想改进这个问题?将问题更新为 on-topic对于堆栈溢出。 7年前关闭。 Improve this qu
我想看看是否可以根据它们所处理的目标函数来比较两者的性能? 最佳答案 顺便说一句,Fuzzy-C-Means (FCM) 聚类算法也称为Soft K-Means。 目标函数实际上是相同的,唯一的区别是
虽然我看到了很多与此相关的问题,但我并没有真正得到答案,可能是因为我是使用 nltk 集群的新手。我确实需要对聚类新手进行基本解释,特别是关于 NLTK K 均值聚类的向量表示以及如何使用它。我有一个
我在学习mean.io来自 this tutorial video ,它显示了示例包(由 mean package mymodule 创建。它也在 docs 的“包”下进行了描述)。我想帮助了解给定的
我是一名优秀的程序员,十分优秀!