- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我使用Spark 2.1.2。
我试图了解各种Spark UI选项卡在作业运行时的显示。我使用spark-shell --master local
并执行以下join
查询:
val df = Seq(
(55, "Canada", -1, "", 0),
(77, "Ontario", 55, "/55", 1),
(100, "Toronto", 77, "/55/77", 2),
(104, "Brampton", 100, "/55/77/100", 3)
).toDF("id", "name", "parentId", "path", "depth")
val dfWithPar = df.as("df1").
join(df.as("df2"), $"df1.parentId" === $"df2.Id", "leftouter").
select($"df1.*", $"df2.name" as "parentName")
dfWithPar.show
== Physical Plan ==
*Project [Id#11, name#12, parentId#13, path#14, depth#15, name#25 AS parentName#63]
+- *BroadcastHashJoin [parentId#13], [Id#24], LeftOuter, BuildRight
:- LocalTableScan [Id#11, name#12, parentId#13, path#14, depth#15]
+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true]))
+- LocalTableScan [Id#24, name#25]
最佳答案
我使用 Spark 2.3.0 来回答您的问题(实际上是 2.3.1-SNAPSHOT ),因为它在撰写本文时是最新的也是最大的。关于查询执行(如果有任何重要内容)的更改几乎没有什么变化,因为您的2.1.2和我的2.3.0中的物理查询计划完全相同(括号中的per-query codegen stage ID除外)。
在dfWithPar.show
之后,结构化查询(使用Spark SQL的Scala数据集API构建的查询)已针对以下物理查询计划进行了优化(为了更好的理解,我将其包含在答案中)。
scala> dfWithPar.explain
== Physical Plan ==
*(1) Project [Id#11, name#12, parentId#13, path#14, depth#15, name#24 AS parentName#58]
+- *(1) BroadcastHashJoin [parentId#13], [Id#23], LeftOuter, BuildRight
:- LocalTableScan [Id#11, name#12, parentId#13, path#14, depth#15]
+- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint)))
+- LocalTableScan [Id#23, name#24]
Why are there two jobs for the query?
BroadcastHashJoinExec
物理运算符,而其他两个作业用于
Dataset.show
。
Dataset.show
(默认
numRows
等于20)调用
showString,即
take(numRows + 1)以获得
Array[Row]
。
val takeResult = newDf.select(castCols: _*).take(numRows + 1)
dfWithPar.show()
等效于
dfWithPar.take(21)
,就涉及Spark作业的数量而言,其又等效于
dfWithPar.head(21)
。
show
或
take
或
head
都导致
collectFromPlan触发Spark作业(通过调用
executeCollect)。
BroadcastHashJoinExec
二进制物理运算符(其确切是
spark.sql.autoBroadcastJoinThreshold
,默认情况下为
10M
)。
BroadcastExchangeExec
一元物理运算符用于将行(具有某种关系)的行广播到辅助节点(以支持
BroadcastHashJoinExec
)。
BroadcastHashJoinExec
(生成
RDD[InternalRow]
)时,
creates a broadcast variable依次执行
BroadcastExchangeExec
(在
separate thread上)。
// Just a single Spark job for the broadcast variable
val r = dfWithPar.rdd
show
,take
和head
最终会导致RDD.take
。take(num: Int): Array[T] Take the first num elements of the RDD. It works by first scanning one partition, and use the results from that partition to estimate the number of additional partitions needed to satisfy the limit.
take
说“它首先扫描一个分区,然后使用该分区的结果来估计满足限制所需的其他分区的数量时,即可工作”。这是了解广播联接查询中Spark作业数量的关键。// RDD.take
def take(num: Int): Array[T] = withScope {
...
while (buf.size < num && partsScanned < totalParts) {
...
val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)
...
}
}
RDD.take
。// The other two Spark jobs
r.take(21)
dfWithPar.show(1)
,将有多少个Spark作业。Why are the stage view shown for both jobs identical? Below is a screenshot of the stage view of job id 1 which is exactly the same of job id 0. Why?
RDD.take(20)
。关于apache-spark - 如何知道(广播)联接查询中的Spark作业和阶段数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49385724/
目前正在学习 Spark 的类(class)并了解到执行者的定义: Each executor will hold a chunk of the data to be processed. Thisc
阅读了有关 http://spark.apache.org/docs/0.8.0/cluster-overview.html 的一些文档后,我有一些问题想要澄清。 以 Spark 为例: JavaSp
Spark核心中的调度器与以下Spark Stack(来自Learning Spark:Lightning-Fast Big Data Analysis一书)中的Standalone Schedule
我想在 spark-submit 或 start 处设置 spark.eventLog.enabled 和 spark.eventLog.dir -all level -- 不要求在 scala/ja
我有来自 SQL Server 的数据,需要在 Apache Spark (Databricks) 中进行操作。 在 SQL Server 中,此表的三个键列使用区分大小写的 COLLATION 选项
所有这些有什么区别和用途? spark.local.ip spark.driver.host spark.driver.bind地址 spark.driver.hostname 如何将机器修复为 Sp
我有大约 10 个 Spark 作业,每个作业都会进行一些转换并将数据加载到数据库中。必须为每个作业单独打开和关闭 Spark session ,每次初始化都会耗费时间。 是否可以只创建一次 Spar
/Downloads/spark-3.0.1-bin-hadoop2.7/bin$ ./spark-shell 20/09/23 10:58:45 WARN Utils: Your hostname,
我是 Spark 的完全新手,并且刚刚开始对此进行更多探索。我选择了更长的路径,不使用任何 CDH 发行版安装 hadoop,并且我从 Apache 网站安装了 Hadoop 并自己设置配置文件以了解
TL; 博士 Spark UI 显示的内核和内存数量与我在使用 spark-submit 时要求的数量不同 更多细节: 我在独立模式下运行 Spark 1.6。 当我运行 spark-submit 时
spark-submit 上的文档说明如下: The spark-submit script in Spark’s bin directory is used to launch applicatio
关闭。这个问题是opinion-based .它目前不接受答案。 想改善这个问题吗?更新问题,以便可以通过 editing this post 用事实和引文回答问题. 6 个月前关闭。 Improve
我想了解接收器如何在 Spark Streaming 中工作。根据我的理解,将有一个接收器任务在执行器中运行,用于收集数据并保存为 RDD。当调用 start() 时,接收器开始读取。需要澄清以下内容
有没有办法在不同线程中使用相同的 spark 上下文并行运行多个 spark 作业? 我尝试使用 Vertx 3,但看起来每个作业都在排队并按顺序启动。 如何让它在相同的 spark 上下文中同时运行
我们有一个 Spark 流应用程序,这是一项长期运行的任务。事件日志指向 hdfs 位置 hdfs://spark-history,当我们开始流式传输应用程序时正在其中创建 application_X
我们正在尝试找到一种加载 Spark (2.x) ML 训练模型的方法,以便根据请求(通过 REST 接口(interface))我们可以查询它并获得预测,例如http://predictor.com
Spark newb 问题:我在 spark-sql 中进行完全相同的 Spark SQL 查询并在 spark-shell . spark-shell版本大约需要 10 秒,而 spark-sql版
我正在使用 Spark 流。根据 Spark 编程指南(参见 http://spark.apache.org/docs/latest/programming-guide.html#accumulato
我正在使用 CDH 5.2。我可以使用 spark-shell 运行命令。 如何运行包含spark命令的文件(file.spark)。 有没有办法在不使用 sbt 的情况下在 CDH 5.2 中运行/
我使用 Elasticsearch 已经有一段时间了,但使用 Cassandra 的经验很少。 现在,我有一个项目想要使用 Spark 来处理数据,但我需要决定是否应该使用 Cassandra 还是
我是一名优秀的程序员,十分优秀!