gpt4 book ai didi

llvm - 使用 CostModel 获取 LLVM IR 的 CPU 周期

转载 作者:行者123 更新时间:2023-12-03 15:01:15 26 4
gpt4 key购买 nike

从 LLVM 3.0 开始,Analysis 目录下有 CostModel.cpp。引用它的文档,它说

This file defines the cost model analysis. It provides a very basic cost estimation for LLVM-IR. This analysis uses the services of the codegen to approximate the cost of any IR instruction when lowered to machine instructions. The cost results are unit-less and the cost number represents the throughput of the machine assuming that all loads hit the cache, all branches are predicted, etc. The cost numbers can be added in order to compare two or more transformation alternatives.



我想知道我应该如何编译和使用这个传递给 IR 文件。具有适当命令的具体示例将是完美的。

最佳答案

以下是对我有用的示例:

要测试的主要功能文件

#include <iostream>
#include <string>
#include <llvm/Support/MemoryBuffer.h>
#include <llvm/Support/ErrorOr.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/LLVMContext.h>
#include <llvm/Bitcode/BitcodeReader.h>
#include <llvm/Support/raw_ostream.h>
#include <llvm/Analysis/Passes.h>
#include <llvm/Analysis/TargetTransformInfo.h>
#include <llvm/Analysis/CostModelDummy.h>
#include "llvm/IRReader/IRReader.h"
#include "llvm/Support/SourceMgr.h"

using namespace llvm;

int main(int argc, char *argv[]) {
StringRef filename = "FILE_NAME";
LLVMContext context;

ErrorOr<std::unique_ptr<MemoryBuffer>> fileOrErr =
MemoryBuffer::getFileOrSTDIN(filename);
if (std::error_code ec = fileOrErr.getError()) {
std::cerr << " Error opening input file: " + ec.message() << std::endl;
return 2;
}
Expected<std::unique_ptr<Module>> moduleOrErr =
parseBitcodeFile(fileOrErr.get()->getMemBufferRef(), context);
if (std::error_code ec = fileOrErr.getError()) {
std::cerr << "Error reading Moduule: " + ec.message() << std::endl;
return 3;
}

llvm::SMDiagnostic Err;
llvm::LLVMContext Context;
std::unique_ptr<llvm::Module> m(parseIRFile(filename, Err, Context));
if (!m)
return 4;

std::cout << "Successfully read Module:" << std::endl;
std::cout << " Name: " << m->getName().str() << std::endl;
std::cout << " Target triple: " << m->getTargetTriple() << std::endl;

for (auto iter1 = m->getFunctionList().begin(); iter1 != m->getFunctionList().end(); iter1++) {
Function &f = *iter1;

CostModelAnalysisDummy obj;
std::cout << " STEP: 1 Function: " << f.getName().str() << std::endl;
obj.runOnFunction(f);

std::cout << " STEP: 2 Function: " << f.getName().str() << std::endl;
for (auto iter2 = f.getBasicBlockList().begin(); iter2 != f.getBasicBlockList().end(); iter2++) {
BasicBlock &bb = *iter2;
std::cout << " BasicBlock: " << bb.getName().str() << std::endl;
for (auto iter3 = bb.begin(); iter3 != bb.end(); iter3++) {
Instruction &inst = *iter3;

std::cout << std::endl << " Number of Cycles" << obj.getInstructionCost(&inst) << std::endl;

std::cout << " Instruction " << &inst << " : " << inst.getOpcodeName();

unsigned int i = 0;
unsigned int opnt_cnt = inst.getNumOperands();
for (; i < opnt_cnt; ++i)
{
Value *opnd = inst.getOperand(i);
std::string o;
// raw_string_ostream os(o);
// opnd->print(os);
//opnd->printAsOperand(os, true, m);
if (opnd->hasName()) {
o = opnd->getName();
std::cout << " " << o << ",";
}
else {
std::cout << " ptr" << opnd << ",";
}
}
std::cout << std::endl;
}
}
}
return 0;
}

源文件
//===- CostModel.cpp ------ Cost Model Analysis ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the cost model analysis. It provides a very basic cost
// estimation for LLVM-IR. This analysis uses the services of the codegen
// to approximate the cost of any IR instruction when lowered to machine
// instructions. The cost results are unit-less and the cost number represents
// the throughput of the machine assuming that all loads hit the cache, all
// branches are predicted, etc. The cost numbers can be added in order to
// compare two or more transformation alternatives.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/CostModelDummy.h"

using namespace llvm;

// Register this pass.
char CostModelAnalysisDummy::ID = 0;
static const char cm_name[] = "Cost Model Analysis";
INITIALIZE_PASS_BEGIN(CostModelAnalysisDummy, CM_NAME, cm_name, false, true)
INITIALIZE_PASS_END(CostModelAnalysisDummy, CM_NAME, cm_name, false, true)


static cl::opt<bool> EnableReduxCost("costmodel-reduxcost-Dummy", cl::init(false),
cl::Hidden,
cl::desc("Recognize reduction patterns."));

FunctionPass *createCostModelAnalysisDummyPass() {
return new CostModelAnalysisDummy();
}

void
CostModelAnalysisDummy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}

bool
CostModelAnalysisDummy::runOnFunction(Function &F) {
this->F = &F;
PMDataManager *DM = getAsPMDataManager();
AnalysisResolver *AR = new AnalysisResolver(*DM);
setResolver(AR);
setTopLevelManager(new CostModelAnalysisDummy());


recordAvailableAnalysis(new TargetTransformInfoWrapperPass());
auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
TTI = TTIWP ? &TTIWP->getTTI(F) : nullptr;

return false;
}

static bool isReverseVectorMask(ArrayRef<int> Mask) {
for (unsigned i = 0, MaskSize = Mask.size(); i < MaskSize; ++i)
if (Mask[i] >= 0 && Mask[i] != (int)(MaskSize - 1 - i))
return false;
return true;
}

static bool isSingleSourceVectorMask(ArrayRef<int> Mask) {
bool Vec0 = false;
bool Vec1 = false;
for (unsigned i = 0, NumVecElts = Mask.size(); i < NumVecElts; ++i) {
if (Mask[i] >= 0) {
if ((unsigned)Mask[i] >= NumVecElts)
Vec1 = true;
else
Vec0 = true;
}
}
return !(Vec0 && Vec1);
}

static bool isZeroEltBroadcastVectorMask(ArrayRef<int> Mask) {
for (unsigned i = 0; i < Mask.size(); ++i)
if (Mask[i] > 0)
return false;
return true;
}

static bool isAlternateVectorMask(ArrayRef<int> Mask) {
bool isAlternate = true;
unsigned MaskSize = Mask.size();

// Example: shufflevector A, B, <0,5,2,7>
for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
if (Mask[i] < 0)
continue;
isAlternate = Mask[i] == (int)((i & 1) ? MaskSize + i : i);
}

if (isAlternate)
return true;

isAlternate = true;
// Example: shufflevector A, B, <4,1,6,3>
for (unsigned i = 0; i < MaskSize && isAlternate; ++i) {
if (Mask[i] < 0)
continue;
isAlternate = Mask[i] == (int)((i & 1) ? i : MaskSize + i);
}

return isAlternate;
}

static TargetTransformInfo::OperandValueKind getOperandInfo(Value *V) {
TargetTransformInfo::OperandValueKind OpInfo =
TargetTransformInfo::OK_AnyValue;

// Check for a splat of a constant or for a non uniform vector of constants.
if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
OpInfo = TargetTransformInfo::OK_NonUniformConstantValue;
if (cast<Constant>(V)->getSplatValue() != nullptr)
OpInfo = TargetTransformInfo::OK_UniformConstantValue;
}

// Check for a splat of a uniform value. This is not loop aware, so return
// true only for the obviously uniform cases (argument, globalvalue)
const Value *Splat = getSplatValue(V);
if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
OpInfo = TargetTransformInfo::OK_UniformValue;

return OpInfo;
}

static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
unsigned Level) {
// We don't need a shuffle if we just want to have element 0 in position 0 of
// the vector.
if (!SI && Level == 0 && IsLeft)
return true;
else if (!SI)
return false;

SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);

// Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
// we look at the left or right side.
for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
Mask[i] = val;

SmallVector<int, 16> ActualMask = SI->getShuffleMask();
return Mask == ActualMask;
}

static bool matchPairwiseReductionAtLevel(const BinaryOperator *BinOp,
unsigned Level, unsigned NumLevels) {
// Match one level of pairwise operations.
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
if (BinOp == nullptr)
return false;

assert(BinOp->getType()->isVectorTy() && "Expecting a vector type");

unsigned Opcode = BinOp->getOpcode();
Value *L = BinOp->getOperand(0);
Value *R = BinOp->getOperand(1);

ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(L);
if (!LS && Level)
return false;
ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(R);
if (!RS && Level)
return false;

// On level 0 we can omit one shufflevector instruction.
if (!Level && !RS && !LS)
return false;

// Shuffle inputs must match.
Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
Value *NextLevelOp = nullptr;
if (NextLevelOpR && NextLevelOpL) {
// If we have two shuffles their operands must match.
if (NextLevelOpL != NextLevelOpR)
return false;

NextLevelOp = NextLevelOpL;
} else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
// On the first level we can omit the shufflevector <0, undef,...>. So the
// input to the other shufflevector <1, undef> must match with one of the
// inputs to the current binary operation.
// Example:
// %NextLevelOpL = shufflevector %R, <1, undef ...>
// %BinOp = fadd %NextLevelOpL, %R
if (NextLevelOpL && NextLevelOpL != R)
return false;
else if (NextLevelOpR && NextLevelOpR != L)
return false;

NextLevelOp = NextLevelOpL ? R : L;
} else
return false;

// Check that the next levels binary operation exists and matches with the
// current one.
BinaryOperator *NextLevelBinOp = nullptr;
if (Level + 1 != NumLevels) {
if (!(NextLevelBinOp = dyn_cast<BinaryOperator>(NextLevelOp)))
return false;
else if (NextLevelBinOp->getOpcode() != Opcode)
return false;
}

// Shuffle mask for pairwise operation must match.
if (matchPairwiseShuffleMask(LS, true, Level)) {
if (!matchPairwiseShuffleMask(RS, false, Level))
return false;
} else if (matchPairwiseShuffleMask(RS, true, Level)) {
if (!matchPairwiseShuffleMask(LS, false, Level))
return false;
} else
return false;

if (++Level == NumLevels)
return true;

// Match next level.
return matchPairwiseReductionAtLevel(NextLevelBinOp, Level, NumLevels);
}

static bool matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
unsigned &Opcode, Type *&Ty) {
if (!EnableReduxCost)
return false;

// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return false;

BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
if (!RdxStart)
return false;

Type *VecTy = ReduxRoot->getOperand(0)->getType();
unsigned NumVecElems = VecTy->getVectorNumElements();
if (!isPowerOf2_32(NumVecElems))
return false;

// We look for a sequence of shuffle,shuffle,add triples like the following
// that builds a pairwise reduction tree.
//
// (X0, X1, X2, X3)
// (X0 + X1, X2 + X3, undef, undef)
// ((X0 + X1) + (X2 + X3), undef, undef, undef)
//
// %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
// %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
// %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
// %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
// %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
// %r = extractelement <4 x float> %bin.rdx8, i32 0
if (!matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)))
return false;

Opcode = RdxStart->getOpcode();
Ty = VecTy;

return true;
}

static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(BinaryOperator *B) {

Value *L = B->getOperand(0);
Value *R = B->getOperand(1);
ShuffleVectorInst *S = nullptr;

if ((S = dyn_cast<ShuffleVectorInst>(L)))
return std::make_pair(R, S);

S = dyn_cast<ShuffleVectorInst>(R);
return std::make_pair(L, S);
}

static bool matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
unsigned &Opcode, Type *&Ty) {
if (!EnableReduxCost)
return false;

// Need to extract the first element.
ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
unsigned Idx = ~0u;
if (CI)
Idx = CI->getZExtValue();
if (Idx != 0)
return false;

BinaryOperator *RdxStart = dyn_cast<BinaryOperator>(ReduxRoot->getOperand(0));
if (!RdxStart)
return false;
unsigned RdxOpcode = RdxStart->getOpcode();

Type *VecTy = ReduxRoot->getOperand(0)->getType();
unsigned NumVecElems = VecTy->getVectorNumElements();
if (!isPowerOf2_32(NumVecElems))
return false;

// We look for a sequence of shuffles and adds like the following matching one
// fadd, shuffle vector pair at a time.
//
// %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
// <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
// %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
// %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
// <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
// %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
// %r = extractelement <4 x float> %bin.rdx8, i32 0

unsigned MaskStart = 1;
Value *RdxOp = RdxStart;
SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
unsigned NumVecElemsRemain = NumVecElems;
while (NumVecElemsRemain - 1) {
// Check for the right reduction operation.
BinaryOperator *BinOp;
if (!(BinOp = dyn_cast<BinaryOperator>(RdxOp)))
return false;
if (BinOp->getOpcode() != RdxOpcode)
return false;

Value *NextRdxOp;
ShuffleVectorInst *Shuffle;
std::tie(NextRdxOp, Shuffle) = getShuffleAndOtherOprd(BinOp);

// Check the current reduction operation and the shuffle use the same value.
if (Shuffle == nullptr)
return false;
if (Shuffle->getOperand(0) != NextRdxOp)
return false;

// Check that shuffle masks matches.
for (unsigned j = 0; j != MaskStart; ++j)
ShuffleMask[j] = MaskStart + j;
// Fill the rest of the mask with -1 for undef.
std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);

SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
if (ShuffleMask != Mask)
return false;

RdxOp = NextRdxOp;
NumVecElemsRemain /= 2;
MaskStart *= 2;
}

Opcode = RdxOpcode;
Ty = VecTy;
return true;
}

unsigned CostModelAnalysisDummy::getInstructionCost(const Instruction *I) const {

if (!TTI)
return -1;

switch (I->getOpcode()) {
case Instruction::GetElementPtr:
return TTI->getUserCost(I);

case Instruction::Ret:
case Instruction::PHI:
case Instruction::Br: {
return TTI->getCFInstrCost(I->getOpcode());
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
TargetTransformInfo::OperandValueKind Op1VK =
getOperandInfo(I->getOperand(0));
TargetTransformInfo::OperandValueKind Op2VK =
getOperandInfo(I->getOperand(1));
SmallVector<const Value*, 2> Operands(I->operand_values());
return TTI->getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK,
Op2VK, TargetTransformInfo::OP_None,
TargetTransformInfo::OP_None,
Operands);
}
case Instruction::Select: {
const SelectInst *SI = cast<SelectInst>(I);
Type *CondTy = SI->getCondition()->getType();
return TTI->getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy);
}
case Instruction::ICmp:
case Instruction::FCmp: {
Type *ValTy = I->getOperand(0)->getType();
return TTI->getCmpSelInstrCost(I->getOpcode(), ValTy);
}
case Instruction::Store: {
const StoreInst *SI = cast<StoreInst>(I);
Type *ValTy = SI->getValueOperand()->getType();
return TTI->getMemoryOpCost(I->getOpcode(), ValTy,
SI->getAlignment(),
SI->getPointerAddressSpace());
}
case Instruction::Load: {
const LoadInst *LI = cast<LoadInst>(I);
return TTI->getMemoryOpCost(I->getOpcode(), I->getType(),
LI->getAlignment(),
LI->getPointerAddressSpace());
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::AddrSpaceCast: {
Type *SrcTy = I->getOperand(0)->getType();
return TTI->getCastInstrCost(I->getOpcode(), I->getType(), SrcTy);
}
case Instruction::ExtractElement: {
const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();

// Try to match a reduction sequence (series of shufflevector and vector
// adds followed by a extractelement).
unsigned ReduxOpCode;
Type *ReduxType;

if (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType))
return TTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, false);
else if (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType))
return TTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, true);

return TTI->getVectorInstrCost(I->getOpcode(),
EEI->getOperand(0)->getType(), Idx);
}
case Instruction::InsertElement: {
const InsertElementInst * IE = cast<InsertElementInst>(I);
ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();
return TTI->getVectorInstrCost(I->getOpcode(),
IE->getType(), Idx);
}
case Instruction::ShuffleVector: {
const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Type *VecTypOp0 = Shuffle->getOperand(0)->getType();
unsigned NumVecElems = VecTypOp0->getVectorNumElements();
SmallVector<int, 16> Mask = Shuffle->getShuffleMask();

if (NumVecElems == Mask.size()) {
if (isReverseVectorMask(Mask))
return TTI->getShuffleCost(TargetTransformInfo::SK_Reverse, VecTypOp0,
0, nullptr);
if (isAlternateVectorMask(Mask))
return TTI->getShuffleCost(TargetTransformInfo::SK_SELECT,
VecTypOp0, 0, nullptr);

if (isZeroEltBroadcastVectorMask(Mask))
return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast,
VecTypOp0, 0, nullptr);

if (isSingleSourceVectorMask(Mask))
return TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc,
VecTypOp0, 0, nullptr);

return TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc,
VecTypOp0, 0, nullptr);
}

return -1;
}
case Instruction::Call:
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
SmallVector<Value *, 4> Args;
for (unsigned J = 0, JE = II->getNumArgOperands(); J != JE; ++J)
Args.push_back(II->getArgOperand(J));

FastMathFlags FMF;
if (auto *FPMO = dyn_cast<FPMathOperator>(II))
FMF = FPMO->getFastMathFlags();

return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
Args, FMF);
}
return -1;
default:
// We don't have any information on this instruction.
return -1;
}
}

void CostModelAnalysisDummy::print(raw_ostream &OS, const Module*) const {
if (!F)
return;

for (BasicBlock &B : *F) {
for (Instruction &Inst : B) {
unsigned Cost = getInstructionCost(&Inst);
if (Cost != (unsigned)-1)
OS << "Cost Model: Found an estimated cost of " << Cost;
else
OS << "Cost Model: Unknown cost";

OS << " for instruction: " << Inst << "\n";
}
}
}

头文件
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iostream>
#include "llvm/IR/LegacyPassManagers.h"

using namespace llvm;


#define CM_NAME "cost-model-sanji"
#define DEBUG_TYPE CM_NAME

class CostModelAnalysisDummy : public PMDataManager, public FunctionPass, public PMTopLevelManager {

public:
static char ID; // Class identification, replacement for typeinfo
CostModelAnalysisDummy() : FunctionPass(ID), PMDataManager(), PMTopLevelManager(new FPPassManager()), F(nullptr), TTI(nullptr) {
llvm::initializeCostModelAnalysisDummyPass(
*PassRegistry::getPassRegistry());
}

/// Returns the expected cost of the instruction.
/// Returns -1 if the cost is unknown.
/// Note, this method does not cache the cost calculation and it
/// can be expensive in some cases.
unsigned getInstructionCost(const Instruction *I) const;
bool runOnFunction(Function &F) override;

PMDataManager *getAsPMDataManager() override { return this; }
Pass *getAsPass() override { return this; }

PassManagerType getTopLevelPassManagerType() override {
return PMT_BasicBlockPassManager;
}

FPPassManager *getContainedManager(unsigned N) {
assert(N < PassManagers.size() && "Pass number out of range!");
FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]);
return FP;
}
private:
void getAnalysisUsage(AnalysisUsage &AU) const override;

void print(raw_ostream &OS, const Module*) const override;

/// The function that we analyze.
Function *F;
/// Target information.
const TargetTransformInfo *TTI;
};

FunctionPass *createCostModelAnalysisDummyPass();

关于llvm - 使用 CostModel 获取 LLVM IR 的 CPU 周期,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24793849/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com