作者热门文章
- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在 PyTorch 中实现基于 U-Net 的架构。在火车时间,我有大小 256x256
的补丁这不会造成任何问题。但是在测试时,我有全高清图像( 1920x1080
)。这会在跳过连接期间导致问题。
下采样 1920x1080
3次给240x135
.如果我再下采样一次,分辨率变为 120x68
当上采样时给出 240x136
.现在,我无法连接这两个特征图。我该如何解决这个问题?
PS:我认为这是一个相当普遍的问题,但我没有得到任何解决方案,甚至在网络上的任何地方都没有提到这个问题。我错过了什么吗?
最佳答案
这是在解码过程中经常涉及跳跃连接的分割网络中非常常见的问题。网络通常(取决于实际架构)需要输入大小,其边长为最大步幅(8、16、32 等)的整数倍。
主要有两种方式:
import torch
import torch.nn.functional as F
def pad_to(x, stride):
h, w = x.shape[-2:]
if h % stride > 0:
new_h = h + stride - h % stride
else:
new_h = h
if w % stride > 0:
new_w = w + stride - w % stride
else:
new_w = w
lh, uh = int((new_h-h) / 2), int(new_h-h) - int((new_h-h) / 2)
lw, uw = int((new_w-w) / 2), int(new_w-w) - int((new_w-w) / 2)
pads = (lw, uw, lh, uh)
# zero-padding by default.
# See others at https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.pad
out = F.pad(x, pads, "constant", 0)
return out, pads
def unpad(x, pad):
if pad[2]+pad[3] > 0:
x = x[:,:,pad[2]:-pad[3],:]
if pad[0]+pad[1] > 0:
x = x[:,:,:,pad[0]:-pad[1]]
return x
一个测试片段:
x = torch.zeros(4, 3, 1080, 1920) # Raw data
x_pad, pads = pad_to(x, 16) # Padded data, feed this to your network
x_unpad = unpad(x_pad, pads) # Un-pad the network output to recover the original shape
print('Original: ', x.shape)
print('Padded: ', x_pad.shape)
print('Recovered: ', x_unpad.shape)
输出:
Original: torch.Size([4, 3, 1080, 1920])
Padded: torch.Size([4, 3, 1088, 1920])
Recovered: torch.Size([4, 3, 1080, 1920])
引用:
https://github.com/seoungwugoh/STM/blob/905f11492a6692dd0d0fa395881a8ec09b211a36/helpers.py#L33
关于python - 如何在 Unet 架构 PyTorch 中处理奇数分辨率,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/66028743/
我是一名优秀的程序员,十分优秀!