- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
如何计算按位 的数组中无序对的数量和 是2
的力量.例如,如果数组是 [10,7,2,8,3]
.答案是6
.
说明(基于 0 的索引):
a[0]&a[1] = 2
a[0]&a[2] = 2
a[0]&a[3] = 8
a[0]&a[4] = 2
a[1]&a[2] = 2
a[2]&a[4] = 2
10^5
.并且该数组中的值可以达到
10^12
.
int ans = 0;
for (int i = 0; i < a.length; i++) {
for (int j = i + 1; j < a.length; j++) {
long and = a[i] & a[j];
if ((and & (and - 1)) == 0 && and != 0)
ans++;
}
}
System.out.println(ans);
最佳答案
虽然这个答案是针对较小的范围约束(可能适合大约 2^20),但我想我会添加它,因为它可能会添加一些有用的信息。
我们可以适应 bit-subset dynamic programming idea与 O(2^N * N^2 + n * N)
有一个解决方案复杂性,其中 N
是范围内的位数,n
是列表中元素的数量。 (因此,如果整数被限制为 [1, 1048576] 或 2^20,而 n
为 100,000,我们将有 2^20 * 20^2 + 100000*20 = 421,430,400 次迭代。)
这个想法是我们想要计算具有重叠位子集的实例,并添加一个固定的设置位。给定 Ai
-- 为简单起见,取 6 = b110
-- 如果我们要找到所有与为零的合作伙伴,我们将采用 Ai
的否定,
110 -> ~110 -> 001
001
^^^
001
^^
001
^
Ai
取反的每个设置位表示一个零,它可以与 1 或 0 进行 AND 运算以达到相同的效果。
Ai
的否定上的每个未设置位表示
Ai
中的一个设置位,我们只想与零配对,除了单个设置位。
Ai
相匹配的对归零,我们会做类似的事情
001 ->
001
000
011 ->
011
010
101 ->
101
100
var debug = 0;
function bruteForce(a){
let answer = 0;
for (let i = 0; i < a.length; i++) {
for (let j = i + 1; j < a.length; j++) {
let and = a[i] & a[j];
if ((and & (and - 1)) == 0 && and != 0){
answer++;
if (debug)
console.log(a[i], a[j], a[i].toString(2), a[j].toString(2))
}
}
}
return answer;
}
function f(A, N){
const n = A.length;
const hash = {};
const dp = new Array(1 << N);
for (let i=0; i<1<<N; i++){
dp[i] = new Array(N + 1);
for (let j=0; j<N+1; j++)
dp[i][j] = new Array(N + 1).fill(0);
}
for (let i=0; i<n; i++){
if (hash.hasOwnProperty(A[i]))
hash[A[i]] = hash[A[i]] + 1;
else
hash[A[i]] = 1;
}
for (let mask=0; mask<1<<N; mask++){
// j is an index where we fix a 1
for (let j=0; j<=N; j++){
if (mask & 1){
if (j == 0)
dp[mask][j][0] = hash[mask] || 0;
else
dp[mask][j][0] = (hash[mask] || 0) + (hash[mask ^ 1] || 0);
} else {
dp[mask][j][0] = hash[mask] || 0;
}
for (let i=1; i<=N; i++){
if (mask & (1 << i)){
if (j == i)
dp[mask][j][i] = dp[mask][j][i-1];
else
dp[mask][j][i] = dp[mask][j][i-1] + dp[mask ^ (1 << i)][j][i - 1];
} else {
dp[mask][j][i] = dp[mask][j][i-1];
}
}
}
}
let answer = 0;
for (let i=0; i<n; i++){
for (let j=0; j<N; j++)
if (A[i] & (1 << j))
answer += dp[((1 << N) - 1) ^ A[i] | (1 << j)][j][N];
}
for (let i=0; i<N + 1; i++)
if (hash[1 << i])
answer = answer - hash[1 << i];
return answer / 2;
}
var As = [
[5, 4, 1, 6], // 4
[10, 7, 2, 8, 3], // 6
[2, 3, 4, 5, 6, 7, 8, 9, 10],
[1, 6, 7, 8, 9]
];
for (let A of As){
console.log(JSON.stringify(A));
console.log(`DP, brute force: ${ f(A, 4) }, ${ bruteForce(A) }`);
console.log('');
}
var numTests = 1000;
for (let i=0; i<numTests; i++){
const N = 6;
const A = [];
const n = 10;
for (let j=0; j<n; j++){
const num = Math.floor(Math.random() * (1 << N));
A.push(num);
}
const fA = f(A, N);
const brute = bruteForce(A);
if (fA != brute){
console.log('Mismatch:');
console.log(A);
console.log(fA, brute);
console.log('');
}
}
console.log("Done testing.");
关于algorithm - 计算按位 "AND"是 O(n) 或 O(n*log(n)) 中 2 的幂的数组中无序对的数量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/62117233/
在使用 requests 库中的状态代码时,我遇到了一些奇怪的事情。每个 HTTP 状态代码都有一个常量,有些具有别名(例如,包括 200 的复选标记): url = 'https://httpbin
这是我得到的代码,但我不知道这两行是什么意思: o[arr[i]] = o[arr[i]] || {}; o = o[arr[i]]; 完整代码: var GLOBAL={}; GLOBAL.name
所以这个问题的答案What is the difference between Θ(n) and O(n)? 指出“基本上,当我们说算法是 O(n) 时,它也是 O(n2)、O(n1000000)、O
这是一个快速的想法;有人会说 O(∞) 实际上是 O(1) 吗? 我的意思是它不依赖于输入大小? 所以在某种程度上它是恒定的,尽管它是无限的。 或者是唯一“正确”的表达方式 O(∞)? 最佳答案 无穷
这是真的: log(A) + log(B) = log(A * B) [0] 这也是真的吗? O(log(A)) + O(log(B)) = O(log(A * B)) [1] 据我了解 O(f
我正在解决面试练习的问题,但我似乎无法找出以下问题的时间和空间复杂度的答案: Given two sorted Linked Lists, merge them into a third list i
我了解 Big-Oh 表示法。但是我该如何解释 O(O(f(n))) 是什么意思呢?是指增长率的增长率吗? 最佳答案 x = O(n)基本上意味着 x <= kn对于一些常量 k . 因此 x = O
我正在编写一个函数,该函数需要一个对象和一个投影来了解它必须在哪个字段上工作。 我想知道是否应该使用这样的字符串: const o = { a: 'Hello There' }; funct
直觉上,我认为这三个表达式是等价的。 例如,如果一个算法在 O(nlogn) + O(n) 或 O(nlogn + n) 中运行(我很困惑),我可以假设这是一个O(nlogn) 算法? 什么是真相?
根据 O'Reilly 的 Python in a Nutshell 中的 Alex Martelli,复杂度类 O(n) + O(n) = O(n)。所以我相信。但是我很困惑。他解释说:“N 的两个
O(n^2)有什么区别和 O(n.log(n)) ? 最佳答案 n^2 的复杂性增长得更快。 关于big-o - 大 O 符号 : differences between O(n^2) and O(n
每当我收到来自 MS outlook 的电子邮件时,我都会收到此标记 & nbsp ; (没有空格)哪个显示为?在 <>. 当我将其更改为 ISO-8859-1 时,浏览器页面字符集编码为 UTF-8
我很难理解 Algorithms by S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani - page 24 中的以下陈述它们将 O(n) 的总和表
我在面试蛋糕上练习了一些问题,并在问题 2给出的解决方案使用两个单独的 for 循环(非嵌套),解决方案提供者声称他/她在 O(n) 时间内解决了它。据我了解,这将是 O(2n) 时间。是我想错了吗,
关于 Java 语法的幼稚问题。什么 T accept(ObjectVisitorEx visitor); 是什么意思? C# 的等价物是什么? 最佳答案 在 C# 中它可能是: O Accept(
假设我有一个长度为 n 的数组,我使用时间为 nlogn 的排序算法对它进行了排序。得到这个排序后的数组后,我遍历它以找到任何具有线性时间的重复元素。我的理解是,由于操作是分开发生的,所以时间是 O(
总和 O(1)+O(2)+ .... +O(n) 的计算结果是什么? 我在某处看到它的解决方案: O(n(n+1) / 2) = O(n^2) 但我对此并不满意,因为 O(1) = O(2) = co
这个问题在这里已经有了答案: 11 年前关闭。 Possible Duplicate: Plain english explanation of Big O 我想这可能是类里面教的东西,但作为一个自学
假设我有两种算法: for (int i = 0; i 2)更长的时间给定的一些n - 其中n这种情况的发生实际上取决于所涉及的算法 - 对于您的具体示例, n 2)分别时间,您可能会看到: Θ(n)
这个问题在这里已经有了答案: Example of a factorial time algorithm O( n! ) (4 个回答) 6年前关闭。 我见过表示为 O(X!) 的 big-o 示例但
我是一名优秀的程序员,十分优秀!