- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用几个线性回归模型。
我想用不同的 30 set.seed 运行线性回归模型
为了澄清起见,我只与两个回归模型和 10 个 set.seed 共享代码(在我的项目中,我有 12 个回归模型,每个模型都应该使用 30 个不同的 set.seeds 运行)
我需要一个解决方案,我可以为一个线性回归模型运行 30 set.seed,这样我就可以在运行期间离开我的笔记本电脑(30 set.seeds)。然后我对第二个回归模型做了同样的事情。
有没有办法在 30 个不同的 set.seed 上自动运行代码。所以我得到了每个 set.seed 的结果。
我希望一切都清楚,我很乐意澄清更多。
注意
请记住,每个回归模型都有四个相关的块。因此,对 set.seed 或 creatFolds 的任何更改都可能影响其他块。
编辑1
dataset用过的
wdbc <- read.delim("airfoil_self_noise.dat",header=F)
wdbcc=as.data.frame(scale(wdbc))
#set.seed(1)
#set.seed(2)
#set.seed(3)
#set.seed(4)
...
k = 30
folds <- createFolds(wdbcc$V6, k = k, list = TRUE, returnTrain = TRUE)
## Ordinary Least Square regression ##
#Block A
lm = list()
for (i in 1:k) {
lm[[i]] = lm(V6~ ., data = wdbcc[folds[[i]],])
}
#Block B
lm_coef = list()
lm_coef_var = list()
for(j in 1:(lm[[1]]$coefficients %>% length())){
for(i in 1:k){
lm_coef[[i]] = lm[[i]]$coefficients[j]
lm_coef_var[[j]] = lm_coef %>% unlist() %>% var()
}
}
#Block C
lm_var = unlist(lm_coef_var)
lm_df = cbind(coefficients = lm[[1]]$coefficients%>% names() %>% as.data.frame()
, variance = lm_var %>% as.data.frame())
colnames(lm_df) = c("coefficients", "variance_lm")
#Block D
lm_var_sum = sum(lm_var)
X=list()
Y=list()
for (i in 1:k) {
n=wdbcc[folds[[i]],-6]
m=wdbcc[folds[[i]],6]
X[[i]]=n
Y[[i]]=m
}
#Block A
lmPQSQ1 = list()
for (i in 1:k) {
lmPQSQ1[[i]] = PQSQRegression(X[[i]],Y[[i]],0.01,data = wdbcc[folds[[i]],])
}
lmmPQSQ1=list()
for (i in 1:k) {
L=list(coefficients = c(lmPQSQ1[[i]][[2]],lmPQSQ1[[i]][[1]]))
lmmPQSQ1[[i]]=L
}
#Block B
lm_coefPQSQ1 = list()
lm_coef_varPQSQ1 = list()
for(j in 1:(lmmPQSQ1[[1]]$coefficients %>% length())){
for(i in 1:k){
lm_coefPQSQ1[[i]] = lmmPQSQ1[[i]]$coefficients[j]
lm_coef_varPQSQ1[[j]] = lm_coefPQSQ1 %>% unlist() %>% var()
}
}
#Block C
lm_varPQSQ1 = unlist(lm_coef_varPQSQ1)
lm_dfPQSQ1 = variance = lm_varPQSQ1 %>% as.data.frame()
#Block D
PQSQ1_var_sum = sum(lm_varPQSQ1)
最佳答案
如果我理解正确,你想回归 V6
使用 OLS 和 LAD 模型的所有其他变量。您要选择 k=30
使用 createFolds
的随机“折叠”并重复此过程 n=30
次。因此,您需要每次重复和每个系数的方差。
我会将拟合部分包装成一个函数 FX
.生成 n=30
种子与 sample
, 用 lapply
循环重复 FX
n=30
次。
FX <- function(seed, data, k=30) {
set.seed(seed) ## sets seed for each iteration
folds <- createFolds(data[, "V6"], k=k, list=TRUE, returnTrain=TRUE) ## folds
## OLS
lm1 <- lapply(folds, function(folds) lm(V6 ~ ., data=data[folds, ]))
lm.coefs <- t(sapply(lm1, coef)) ## lm coefficients
## LAD
lad1 <- lapply(folds, function(folds) lad(V6 ~ ., data=data[folds, ], method="BR"))
lad.coefs <- t(sapply(lad1, coef)) ## lad coefficients
## calculate column variances for both coef matrices
## use `attr<-` to add the seed as an attribute if you want
return(`attr<-`(cbind(lm=apply(lm.coefs, 2, var), lad=apply(lad.coefs, 2, var)),
"seed", seed))
}
seeds <- 1:30 ## specific seeds 1, 2, ... 30
## if you want non-consecutive specific seeds, do:
# set.seed(42) ## set some initial seed
# n <- 30 ## n. o. seeds
# seeds <- sample(1:1e6, n) ## sample seeds for `FX`
res <- lapply(seeds, FX, data=wdbcc) ## lapply loop
res[1:2] ## first two lists
# [[1]]
# lm lad
# (Intercept) 9.104280e-06 1.273920e-05
# V1 2.609623e-05 6.992753e-05
# V2 7.082099e-05 2.075875e-05
# V3 1.352299e-05 1.209651e-05
# V4 7.986000e-06 9.273005e-06
# V5 5.545298e-05 1.535849e-05
# attr(,"seed")
# [1] 1
#
# [[2]]
# lm lad
# (Intercept) 4.558722e-06 2.031707e-05
# V1 2.256583e-05 9.291900e-05
# V2 6.519648e-05 2.768443e-05
# V3 1.800889e-05 9.983524e-06
# V4 1.131813e-05 1.174496e-05
# V5 3.866105e-05 1.022452e-05
# attr(,"seed")
# [1] 2
length(res)
# [1] 30
colSums
在
sapply
.
# sum of variances
sov <- t(sapply(res, colSums))
dim(sov)
# [1] 30 2
head(sov)
# lm lad
# [1,] 1.829835e-04 0.0001401535
# [2,] 1.603091e-04 0.0001728735
# [3,] 1.003093e-04 0.0001972869
# [4,] 1.460591e-04 0.0001508251
# [5,] 9.915082e-05 0.0001262106
# [6,] 1.425996e-04 0.0001478449
lapply
的迭代是什么确实,考虑一下:
## provide the values of first iteration for arguments of function `FX`
seed <- 1
data <- wdbcc
k <- 30
## first iteration of `lapply`
set.seed(seed)
folds <- createFolds(data[, "V6"], k=k, list=TRUE, returnTrain=TRUE) ## folds
## OLS
lm1 <- lapply(folds, function(folds) lm(V6 ~ ., data=data[folds, ]))
lm.coefs <- t(sapply(lm1, coef)) ## lm coefficients
dim(lm.coefs)
# [1] 30 6
head(lm.coefs)
# (Intercept) V1 V2 V3 V4 V5
# Fold01 -0.0039130125 -0.5806272 -0.3564769 -0.4804492 0.2271908 -0.2805472
# Fold02 0.0013260444 -0.5863764 -0.3533327 -0.4759213 0.2253128 -0.2874691
# Fold03 0.0006791787 -0.5890787 -0.3678586 -0.4832066 0.2220979 -0.2739124
# Fold04 -0.0010721593 -0.5868079 -0.3722466 -0.4895328 0.2227811 -0.2749657
# Fold05 0.0021856620 -0.5850165 -0.3495360 -0.4810657 0.2235410 -0.2936287
# Fold06 0.0001486909 -0.5872607 -0.3677774 -0.4848523 0.2275780 -0.2823764
## LAD (same as OLS)
lad1 <- lapply(folds, function(folds) lad(V6 ~ ., data=data[folds, ], method="BR"))
lad.coefs <- t(sapply(lad1, coef)) ## lad coefficients
## return, throws variances for each coefficient of each model in a matrix
## the seed is added as an attribute, to be able to identify it later
res.1 <- `attr<-`(cbind(var.lm=apply(lm.coefs, 2, var),
var.lad=apply(lad.coefs, 2, var)),
"seed", seed)
res.1
# var.lm var.lad
# (Intercept) 9.104280e-06 1.273920e-05
# V1 2.609623e-05 6.992753e-05
# V2 7.082099e-05 2.075875e-05
# V3 1.352299e-05 1.209651e-05
# V4 7.986000e-06 9.273005e-06
# V5 5.545298e-05 1.535849e-05
# attr(,"seed")
# [1] 1
res.1
与列表的第一个元素
res
以上。
sov.1 <- colSums(res.1)
sov.1
# var.lm var.lad
# 0.0001829835 0.0001401535
sov.1
与矩阵的第一行
sov
以上。
lm.fit
,我们可以使用
model.matrix
并预先进行子集化,见行
lm2.coefs
在函数中;比较
lm
和
lm2
res2
中的列下面,他们是平等的。 (
lm.fit
也比
lm
快,因为它省略了不必要的计算,你只需要系数;因此你实际上可以用
lm
行替换
lm.fit
。也可能有一种方法与
lad
使用
lsfit
在代码中,但老实说,我对
lad
太陌生,无法为您提供此解决方案。)
sapply
将每个模型的两条线合并为一条线。直接上
$coefficients
.
sapply
作品为
lapply
但抛出一个矩阵;请注意,我们需要
t
逃跑。
FX2 <- function(seed, data, k=30) {
set.seed(seed) ## sets seed for each iteration
folds <- createFolds(data[, "V6"], k=k, list=TRUE, returnTrain=TRUE) ## draw folds
lm.coefs <- t(sapply(folds, function(f) lm(V6 ~ ., data=data[f, ])$coef))
lm2.coefs <- t(sapply(folds, function(f) {
data2 <- data[f, ]
lm.fit(x=model.matrix(V6 ~ ., data2), y=data2[,"V6"])$coef
}))
lad.coefs <- t(sapply(folds, function(f) lad(V6 ~ ., data=data[f, ], method="BR")$coef))
return(`attr<-`(cbind(lm=apply(lm.coefs, 2, var),
lm2=apply(lm2.coefs, 2, var),
lad=apply(lad.coefs, 2, var)),
"seed", seed))
}
seeds <- 1:30
res.2 <- lapply(seeds, FX2, data=wdbcc) ## lapply loop
res.2[1:2]
# [[1]]
# lm lm2 lad
# (Intercept) 9.104280e-06 9.104280e-06 1.273920e-05
# V1 2.609623e-05 2.609623e-05 6.992753e-05
# V2 7.082099e-05 7.082099e-05 2.075875e-05
# V3 1.352299e-05 1.352299e-05 1.209651e-05
# V4 7.986000e-06 7.986000e-06 9.273005e-06
# V5 5.545298e-05 5.545298e-05 1.535849e-05
# attr(,"seed")
# [1] 1
#
# [[2]]
# lm lm2 lad
# (Intercept) 4.558722e-06 4.558722e-06 2.031707e-05
# V1 2.256583e-05 2.256583e-05 9.291900e-05
# V2 6.519648e-05 6.519648e-05 2.768443e-05
# V3 1.800889e-05 1.800889e-05 9.983524e-06
# V4 1.131813e-05 1.131813e-05 1.174496e-05
# V5 3.866105e-05 3.866105e-05 1.022452e-05
# attr(,"seed")
# [1] 2
invisible(lapply(c("caret", "L1pack"), library, character.only=TRUE))
wdbcc <- read.delim("airfoil_self_noise.dat", header=F)
wdbcc[] <- lapply(wdbcc, scale)
关于使用 R 自动运行超过 30 个特定 set.seed 的回归模型,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/60895347/
我在网上搜索但没有找到任何合适的文章解释如何使用 javascript 使用 WCF 服务,尤其是 WebScriptEndpoint。 任何人都可以对此给出任何指导吗? 谢谢 最佳答案 这是一篇关于
我正在编写一个将运行 Linux 命令的 C 程序,例如: cat/etc/passwd | grep 列表 |剪切-c 1-5 我没有任何结果 *这里 parent 等待第一个 child (chi
所以我正在尝试处理文件上传,然后将该文件作为二进制文件存储到数据库中。在我存储它之后,我尝试在给定的 URL 上提供文件。我似乎找不到适合这里的方法。我需要使用数据库,因为我使用 Google 应用引
我正在尝试制作一个宏,将下面的公式添加到单元格中,然后将其拖到整个列中并在 H 列中复制相同的公式 我想在 F 和 H 列中输入公式的数据 Range("F1").formula = "=IF(ISE
问题类似于this one ,但我想使用 OperatorPrecedenceParser 解析带有函数应用程序的表达式在 FParsec . 这是我的 AST: type Expression =
我想通过使用 sequelize 和 node.js 将这个查询更改为代码取决于在哪里 select COUNT(gender) as genderCount from customers where
我正在使用GNU bash,版本5.0.3(1)-发行版(x86_64-pc-linux-gnu),我想知道为什么简单的赋值语句会出现语法错误: #/bin/bash var1=/tmp
这里,为什么我的代码在 IE 中不起作用。我的代码适用于所有浏览器。没有问题。但是当我在 IE 上运行我的项目时,它发现错误。 而且我的 jquery 类和 insertadjacentHTMl 也不
我正在尝试更改标签的innerHTML。我无权访问该表单,因此无法编辑 HTML。标签具有的唯一标识符是“for”属性。 这是输入和标签的结构:
我有一个页面,我可以在其中返回用户帖子,可以使用一些 jquery 代码对这些帖子进行即时评论,在发布新评论后,我在帖子下插入新评论以及删除 按钮。问题是 Delete 按钮在新插入的元素上不起作用,
我有一个大约有 20 列的“管道分隔”文件。我只想使用 sha1sum 散列第一列,它是一个数字,如帐号,并按原样返回其余列。 使用 awk 或 sed 执行此操作的最佳方法是什么? Accounti
我需要将以下内容插入到我的表中...我的用户表有五列 id、用户名、密码、名称、条目。 (我还没有提交任何东西到条目中,我稍后会使用 php 来做)但由于某种原因我不断收到这个错误:#1054 - U
所以我试图有一个输入字段,我可以在其中输入任何字符,但然后将输入的值小写,删除任何非字母数字字符,留下“。”而不是空格。 例如,如果我输入: 地球的 70% 是水,-!*#$^^ & 30% 土地 输
我正在尝试做一些我认为非常简单的事情,但出于某种原因我没有得到想要的结果?我是 javascript 的新手,但对 java 有经验,所以我相信我没有使用某种正确的规则。 这是一个获取输入值、检查选择
我想使用 angularjs 从 mysql 数据库加载数据。 这就是应用程序的工作原理;用户登录,他们的用户名存储在 cookie 中。该用户名显示在主页上 我想获取这个值并通过 angularjs
我正在使用 autoLayout,我想在 UITableViewCell 上放置一个 UIlabel,它应该始终位于单元格的右侧和右侧的中心。 这就是我想要实现的目标 所以在这里你可以看到我正在谈论的
我需要与 MySql 等效的 elasticsearch 查询。我的 sql 查询: SELECT DISTINCT t.product_id AS id FROM tbl_sup_price t
我正在实现代码以使用 JSON。 func setup() { if let flickrURL = NSURL(string: "https://api.flickr.com/
我尝试使用for循环声明变量,然后测试cols和rols是否相同。如果是,它将运行递归函数。但是,我在 javascript 中执行 do 时遇到问题。有人可以帮忙吗? 现在,在比较 col.1 和
我举了一个我正在处理的问题的简短示例。 HTML代码: 1 2 3 CSS 代码: .BB a:hover{ color: #000; } .BB > li:after {
我是一名优秀的程序员,十分优秀!