- html - 出于某种原因,IE8 对我的 Sass 文件中继承的 html5 CSS 不友好?
- JMeter 在响应断言中使用 span 标签的问题
- html - 在 :hover and :active? 上具有不同效果的 CSS 动画
- html - 相对于居中的 html 内容固定的 CSS 重复背景?
我正在使用Julian Bucknall在他的著名著作The Tomes Of Delphi中编写的Red-Black树实现。源代码可以是downloaded here,我在Delphi 2010中按原样使用代码,并对TdBasics.pas
进行了修改,以使其可以在现代版本的Delphi中进行编译(大多数情况下都将其注释掉了-只有少数定义是树代码所要求的。)
这是著名作者在经常推荐的书中的著名实现。我觉得我应该坚定地使用它。但是我在使用Delete()
和Promote()
时发生崩溃。退一步使用DUnit编写单元测试,这些问题很容易重现。一些示例代码是(我的DUnit测试中的代码片段):
// Tests that require an initialised tree start with one with seven items
const
NumInitialItems : Integer = 7;
...
// Data is an int, not a pointer
function Compare(aData1, aData2: Pointer): Integer;
begin
if NativeInt(aData1) < NativeInt(aData2) then Exit(-1);
if NativeInt(aData1) > NativeInt(aData2) then Exit(1);
Exit(0);
end;
// Add seven items (0..6) to the tree. Node.Data is a pointer field, just cast.
procedure TestTRedBlackTree.SetUp;
var
Loop : Integer;
begin
FRedBlackTree := TtdRedBlackTree.Create(Compare, nil);
for Loop := 0 to NumInitialItems - 1 do begin
FRedBlackTree.Insert(Pointer(Loop));
end;
end;
...
// Delete() crashes for the first item, no matter if it is 0 or 1 or...
procedure TestTRedBlackTree.TestDelete;
var
aItem: Pointer;
Loop : Integer;
begin
for Loop := 1 to NumInitialItems - 1 do begin // In case 0 (nil) causes problems, but 1 fails too
aItem := Pointer(Loop);
Check(FRedBlackTree.Find(aItem) = aItem, 'Item not found before deleting');
FRedBlackTree.Delete(aItem);
Check(FRedBlackTree.Find(aItem) = nil, 'Item found after deleting');
Check(FRedBlackTree.Count = NumInitialItems - Loop, 'Item still in the tree');
end;
end;
Promote()
的行上,以上测试在
!!!
中失败:
function TtdRedBlackTree.rbtPromote(aNode : PtdBinTreeNode)
: PtdBinTreeNode;
var
Parent : PtdBinTreeNode;
begin
{make a note of the parent of the node we're promoting}
Parent := aNode^.btParent;
{in both cases there are 6 links to be broken and remade: the node's
link to its child and vice versa, the node's link with its parent
and vice versa and the parent's link with its parent and vice
versa; note that the node's child could be nil}
{promote a left child = right rotation of parent}
if (Parent^.btChild[ctLeft] = aNode) then begin
Parent^.btChild[ctLeft] := aNode^.btChild[ctRight];
if (Parent^.btChild[ctLeft] <> nil) then
Parent^.btChild[ctLeft]^.btParent := Parent;
aNode^.btParent := Parent^.btParent;
if (aNode^.btParent^.btChild[ctLeft] = Parent) then //!!!
aNode^.btParent^.btChild[ctLeft] := aNode
else
aNode^.btParent^.btChild[ctRight] := aNode;
aNode^.btChild[ctRight] := Parent;
Parent^.btParent := aNode;
end
...
Parent.btParent
(成为
aNode.btParent
)是
nil
,因此崩溃。检查树结构,节点的父节点是根节点,根节点本身显然具有
nil
父节点。
if aNode.btParent <> nil then begin //!!! Grandparent doesn't exist, because parent is root node
if (aNode^.btParent^.btChild[ctLeft] = Parent) then
aNode^.btParent^.btChild[ctLeft] := aNode
else
aNode^.btParent^.btChild[ctRight] := aNode;
aNode^.btChild[ctRight] := Parent;
end;
Parent^.btParent := aNode;
...
TtdBinarySearchTree.bstFindItem
崩溃:
Walker := FBinTree.Root;
CmpResult := FCompare(aItem, Walker^.btData);
FBinTree.Root
是
nil
,在调用
FCompare
时崩溃。
Promote
和该类中其他位置的所有错误。请注意,我还为基类
TtdBinarySearchTree
编写了单元测试,并且所有这些都通过了。 (这并不意味着它是完美的-我可能没有发现失败的案例。但这有所帮助。)
最佳答案
通过检查Delphi源代码的Tomes并与算法或Julian的其他实现(经过高度优化的EZDSL库实现)进行比较,我还没有设法找出问题所在,但是我还是重新实现了基于示例C code for a red-black tree on the Literate Programming site,这也是我发现的红黑树最清晰的示例之一,并且Delete
以及Insert
也很好。 (实际上,仅通过遍历代码并验证其是否正确实现了一个错误,这实际上是一项艰巨的任务,尤其是当您不完全理解该算法时。我可以告诉您,我现在有了更好的理解!) tree的文档非常好-我认为Delphi的Tomes更好地概述了为什么树能够像它那样工作的原因,但是此代码是可读性更好的示例。
关于此的注意事项:
注释通常是页面对特定方法的解释中的直接引号。
尽管我已将过程C代码移至面向对象的结构,但移植起来非常容易。有一些较小的怪癖,例如具有FHead
节点的Bucknall的树,其子节点是树的根,在转换时必须要注意。 (测试经常测试节点的父节点是否为NULL,以此来测试该节点是否为根节点。我已经将此方法以及其他类似的逻辑提取到辅助方法,节点或树方法中。)
读者可能还会发现Eternally Confuzzled page on red-black trees有用。尽管在编写此实现时没有使用过它,但我可能应该使用它,并且如果该实现中有错误,我将转向那里进行深入了解。这也是我在调试ToD时研究RB树时发现的第一页,其中提到了红黑树和2-3-4 trees之间的联系。
如果不清楚,此代码将修改在TtdBinaryTree
(source code download on the ToD page)中找到的Delphi示例TtdBinarySearchTree
,TtdRedBlackTree
和TDBinTre.pas
的Tomes。要使用它,请编辑该文件。这不是一个新的实现,也不是一个完整的实现。具体来说,它使用TtdBinarySearchTree
节点而不是TtdBinaryTree
的父代来保持ToD代码的结构,例如FHead
不是Root
的后代,而是拥有一个作为成员(即包装它)。等
原始代码是MIT许可的。 (该站点正在迁移到另一个许可证;在您检查该站点时,它可能已更改。对于将来的读者,在编写本文时,该代码肯定是在MIT许可证下的。)我不确定Tomes的许可证Delphi代码;因为它在算法书中,所以假设您可以使用它可能是合理的-我认为它隐含在参考书中。就我而言,只要您遵守原始许可证,就可以使用它:)我想知道,如果有用,请发表评论。
Delphi实现的Tomes通过使用先祖排序的二叉树的插入方法进行插入,然后“提升”节点来工作。逻辑在这两个地方中的任何一个中。此实现还实现了插入,然后涉及多种情况以检查位置并通过显式旋转对其进行修改。这些轮换在单独的方法(RotateLeft
和RotateRight
)中,我发现这很有用-ToD代码讨论轮换,但未明确将其拉入单独的命名方法。 Delete
类似:它涉及许多情况。每个案例都在页面上进行了说明,并在我的代码中作为注释。我为其中的一些命名,但有些太复杂而无法放入方法名称,因此只有“情况4”,“情况5”等,并带有注释说明。
该页面还具有验证树的结构和红黑属性的代码。我已经在编写单元测试的过程中开始执行此操作,但是还没有完全添加所有红黑树约束,因此也将此代码添加到了树中。它仅存在于调试版本中,并断言是否有问题,因此在调试中完成的单元测试将捕获问题。
该树现在通过了我的单元测试,尽管它们可以进行更广泛的测试-我编写它们是为了简化Delphi树的Tomes调试。此代码不提供任何形式的保证。认为它未经测试。在使用前编写测试。如果发现错误,请发表评论:)
上代码!
节点修改
我在节点上添加了以下帮助器方法,以使代码在阅读时更具素养。例如,原始代码经常通过测试(盲转换为Delphi和未修改的ToD结构)来测试节点是否是其父节点的左子节点,而现在您可以测试if Node = Node.Parent.btChild[ctLeft] then...
等。记录定义中的方法原型不包括以节省空间,但应该很明显:)
function TtdBinTreeNode.Parent: PtdBinTreeNode;
begin
assert(btParent <> nil, 'Parent is nil');
Result := btParent;
end;
function TtdBinTreeNode.Grandparent: PtdBinTreeNode;
begin
assert(btParent <> nil, 'Parent is nil');
Result := btParent.btParent;
assert(Result <> nil, 'Grandparent is nil - child of root node?');
end;
function TtdBinTreeNode.Sibling: PtdBinTreeNode;
begin
assert(btParent <> nil, 'Parent is nil');
if @Self = btParent.btChild[ctLeft] then
Exit(btParent.btChild[ctRight])
else
Exit(btParent.btChild[ctLeft]);
end;
function TtdBinTreeNode.Uncle: PtdBinTreeNode;
begin
assert(btParent <> nil, 'Parent is nil');
// Can be nil if grandparent has only one child (children of root have no uncle)
Result := btParent.Sibling;
end;
function TtdBinTreeNode.LeftChild: PtdBinTreeNode;
begin
Result := btChild[ctLeft];
end;
function TtdBinTreeNode.RightChild: PtdBinTreeNode;
begin
Result := btChild[ctRight];
end;
function TtdBinTreeNode.IsLeft: Boolean;
begin
Result := @Self = Parent.LeftChild;
end;
function TtdBinTreeNode.IsRight: Boolean;
begin
Result := @Self = Parent.RightChild;
end;
if Node.IsLeft then...
,以测试其是否为黑色(如果IMO代码显示
IsRed()
而不是
if IsBlack(Node)
,则IMO代码会扫描得更好,并获得颜色,包括处理nil节点。请注意,这些需要保持一致-例如,
if not IsRed(Node)
对于一个nil节点返回false,因此nil节点为黑色(这也与一棵红黑树的属性以及路径上一致数目的黑色节点有关)一片叶子。)
function IsBlack(aNode : PtdBinTreeNode) : boolean;
begin
Result := not IsRed(aNode);
end;
function NodeColor(aNode :PtdBinTreeNode) : TtdRBColor;
begin
if aNode = nil then Exit(rbBlack);
Result := aNode.btColor;
end;
IsRed
声明为内联。如果未调试,则该方法应为空,并有望被编译器完全删除。在
Verify
和
Verify
方法的开始和结束处调用
Insert
,以确保修改前后树都是正确的。
procedure TtdRedBlackTree.Verify;
begin
{$ifdef DEBUG}
VerifyNodesRedOrBlack(FBinTree.Root);
VerifyRootIsBlack;
// 3 is implicit
VerifyRedBlackRelationship(FBinTree.Root);
VerifyBlackNodeCount(FBinTree.Root);
{$endif}
end;
procedure TtdRedBlackTree.VerifyNodesRedOrBlack(const Node : PtdBinTreeNode);
begin
// Normally implicitly ok in Delphi, due to type system - can't assign something else
// However, node uses a union / case to write to the same value, theoretically
// only for other tree types, so worth checking
assert((Node.btColor = rbRed) or (Node.btColor = rbBlack));
if Node = nil then Exit;
VerifyNodesRedOrBlack(Node.LeftChild);
VerifyNodesRedOrBlack(Node.RightChild);
end;
procedure TtdRedBlackTree.VerifyRootIsBlack;
begin
assert(IsBlack(FBinTree.Root));
end;
procedure TtdRedBlackTree.VerifyRedBlackRelationship(const Node : PtdBinTreeNode);
begin
// Every red node has two black children; or, the parent of every red node is black.
if IsRed(Node) then begin
assert(IsBlack(Node.LeftChild));
assert(IsBlack(Node.RightChild));
assert(IsBlack(Node.Parent));
end;
if Node = nil then Exit;
VerifyRedBlackRelationship(Node.LeftChild);
VerifyRedBlackRelationship(Node.RightChild);
end;
procedure VerifyBlackNodeCountHelper(const Node : PtdBinTreeNode; BlackCount : NativeInt; var PathBlackCount : NativeInt);
begin
if IsBlack(Node) then begin
Inc(BlackCount);
end;
if Node = nil then begin
if PathBlackCount = -1 then begin
PathBlackCount := BlackCount;
end else begin
assert(BlackCount = PathBlackCount);
end;
Exit;
end;
VerifyBlackNodeCountHelper(Node.LeftChild, BlackCount, PathBlackCount);
VerifyBlackNodeCountHelper(Node.RightChild, BlackCount, PathBlackCount);
end;
procedure TtdRedBlackTree.VerifyBlackNodeCount(const Node : PtdBinTreeNode);
var
PathBlackCount : NativeInt;
begin
// All paths from a node to its leaves contain the same number of black nodes.
PathBlackCount := -1;
VerifyBlackNodeCountHelper(Node, 0, PathBlackCount);
end;
procedure TtdRedBlackTree.RotateLeft(Node: PtdBinTreeNode);
var
R : PtdBinTreeNode;
begin
R := Node.RightChild;
ReplaceNode(Node, R);
Node.btChild[ctRight] := R.LeftChild;
if R.LeftChild <> nil then begin
R.LeftChild.btParent := Node;
end;
R.btChild[ctLeft] := Node;
Node.btParent := R;
end;
procedure TtdRedBlackTree.RotateRight(Node: PtdBinTreeNode);
var
L : PtdBinTreeNode;
begin
L := Node.LeftChild;
ReplaceNode(Node, L);
Node.btChild[ctLeft] := L.RightChild;
if L.RightChild <> nil then begin
L.RightChild.btParent := Node;
end;
L.btChild[ctRight] := Node;
Node.btParent := L;
end;
procedure TtdRedBlackTree.ReplaceNode(OldNode, NewNode: PtdBinTreeNode);
begin
if IsRoot(OldNode) then begin
SetRoot(NewNode);
end else begin
if OldNode.IsLeft then begin // // Is the left child of its parent
OldNode.Parent.btChild[ctLeft] := NewNode;
end else begin
OldNode.Parent.btChild[ctRight] := NewNode;
end;
end;
if NewNode <> nil then begin
newNode.btParent := OldNode.Parent;
end;
end;
function TtdRedBlackTree.IsRoot(const Node: PtdBinTreeNode): Boolean;
begin
Result := Node = FBinTree.Root;
end;
procedure TtdRedBlackTree.SetRoot(Node: PtdBinTreeNode);
begin
Node.btColor := rbBlack; // Root is always black
FBinTree.SetRoot(Node);
Node.btParent.btColor := rbBlack; // FHead is black
end;
function TtdRedBlackTree.MaximumNode(Node: PtdBinTreeNode): PtdBinTreeNode;
begin
assert(Node <> nil);
while Node.RightChild <> nil do begin
Node := Node.RightChild;
end;
Result := Node;
end;
Delete
的包装。该代码以一种过于联系的方式直接修改了树。
FBinTree
和包装器红黑树都保留节点数
FBinTree
,为了使它更干净,我删除了
FCount
(红黑树的祖先)的
TtdBinarySearchTree
并重定向
FCount
返回
Count
,即询问二进制搜索树和红黑树类使用的实际内部树-毕竟是拥有节点的东西。我还添加了通知方法
FBinTree.Count
和
NodeInserted
来增加和减少计数。不包括代码(琐碎的)。
function TtdBinaryTree.NewNode(const Item : Pointer): PtdBinTreeNode;
begin
{allocate a new node }
Result := BTNodeManager.AllocNode;
Result^.btParent := nil;
Result^.btChild[ctLeft] := nil;
Result^.btChild[ctRight] := nil;
Result^.btData := Item;
Result.btColor := rbRed; // Red initially
end;
procedure TtdBinaryTree.DisposeNode(Node: PtdBinTreeNode);
begin
// Free whatever Data was pointing to, if necessary
if Assigned(FDispose) then FDispose(Node.btData);
// Free the node
BTNodeManager.FreeNode(Node);
// Decrement the node count
NodeRemoved;
end;
procedure TtdRedBlackTree.Insert(aItem : pointer);
var
NewNode, Node : PtdBinTreeNode;
Comparison : NativeInt;
begin
Verify;
newNode := FBinTree.NewNode(aItem);
assert(IsRed(NewNode)); // new node is red
if IsRoot(nil) then begin
SetRoot(NewNode);
NodeInserted;
end else begin
Node := FBinTree.Root;
while True do begin
Comparison := FCompare(aItem, Node.btData);
case Comparison of
0: begin
// Equal: tree doesn't support duplicate values
assert(false, 'Should not insert a duplicate item');
FBinTree.DisposeNode(NewNode);
Exit;
end;
-1: begin
if Node.LeftChild = nil then begin
Node.btChild[ctLeft] := NewNode;
Break;
end else begin
Node := Node.LeftChild;
end;
end;
else begin
assert(Comparison = 1, 'Only -1, 0 and 1 are valid comparison values');
if Node.RightChild = nil then begin
Node.btChild[ctRight] := NewNode;
Break;
end else begin
Node := Node.RightChild;
end;
end;
end;
end;
NewNode.btParent := Node; // Because assigned to left or right child above
NodeInserted; // Increment count
end;
InsertCase1(NewNode);
Verify;
end;
// Node is now the root of the tree. Node must be black; because it's the only
// node, there is only one path, so the number of black nodes is ok
procedure TtdRedBlackTree.InsertCase1(Node: PtdBinTreeNode);
begin
if not IsRoot(Node) then begin
InsertCase2(Node);
end else begin
// Node is root (the less likely case)
Node.btColor := rbBlack;
end;
end;
// New node has a black parent: all properties ok
procedure TtdRedBlackTree.InsertCase2(Node: PtdBinTreeNode);
begin
// If it is black, then everything ok, do nothing
if not IsBlack(Node.Parent) then InsertCase3(Node);
end;
// More complex: uncle is red. Recolor parent and uncle black and grandparent red
// The grandparent change may break the red-black properties, so start again
// from case 1.
procedure TtdRedBlackTree.InsertCase3(Node: PtdBinTreeNode);
begin
if IsRed(Node.Uncle) then begin
Node.Parent.btColor := rbBlack;
Node.Uncle.btColor := rbBlack;
Node.Grandparent.btColor := rbRed;
InsertCase1(Node.Grandparent);
end else begin
InsertCase4(Node);
end;
end;
// "In this case, we deal with two cases that are mirror images of one another:
// - The new node is the right child of its parent and the parent is the left child
// of the grandparent. In this case we rotate left about the parent.
// - The new node is the left child of its parent and the parent is the right child
// of the grandparent. In this case we rotate right about the parent.
// Neither of these fixes the properties, but they put the tree in the correct form
// to apply case 5."
procedure TtdRedBlackTree.InsertCase4(Node: PtdBinTreeNode);
begin
if (Node.IsRight) and (Node.Parent = Node.Grandparent.LeftChild) then begin
RotateLeft(Node.Parent);
Node := Node.LeftChild;
end else if (Node.IsLeft) and (Node.Parent = Node.Grandparent.RightChild) then begin
RotateRight(Node.Parent);
Node := Node.RightChild;
end;
InsertCase5(Node);
end;
// " In this final case, we deal with two cases that are mirror images of one another:
// - The new node is the left child of its parent and the parent is the left child
// of the grandparent. In this case we rotate right about the grandparent.
// - The new node is the right child of its parent and the parent is the right child
// of the grandparent. In this case we rotate left about the grandparent.
// Now the properties are satisfied and all cases have been covered."
procedure TtdRedBlackTree.InsertCase5(Node: PtdBinTreeNode);
begin
Node.Parent.btColor := rbBlack;
Node.Grandparent.btColor := rbRed;
if (Node.IsLeft) and (Node.Parent = Node.Grandparent.LeftChild) then begin
RotateRight(Node.Grandparent);
end else begin
assert((Node.IsRight) and (Node.Parent = Node.Grandparent.RightChild));
RotateLeft(Node.Grandparent);
end;
end;
procedure TtdRedBlackTree.Delete(aItem : pointer);
var
Node,
Predecessor,
Child : PtdBinTreeNode;
begin
Node := bstFindNodeToDelete(aItem);
if Node = nil then begin
assert(false, 'Node not found');
Exit;
end;
if (Node.LeftChild <> nil) and (Node.RightChild <> nil) then begin
Predecessor := MaximumNode(Node.LeftChild);
Node.btData := aItem;
Node := Predecessor;
end;
assert((Node.LeftChild = nil) or (Node.RightChild = nil));
if Node.LeftChild = nil then
Child := Node.RightChild
else
Child := Node.LeftChild;
if IsBlack(Node) then begin
Node.btColor := NodeColor(Child);
DeleteCase1(Node);
end;
ReplaceNode(Node, Child);
if IsRoot(Node) and (Child <> nil) then begin
Child.btColor := rbBlack;
end;
FBinTree.DisposeNode(Node);
Verify;
end;
// If Node is the root node, the deletion removes one black node from every path
// No properties violated, return
procedure TtdRedBlackTree.DeleteCase1(Node: PtdBinTreeNode);
begin
if IsRoot(Node) then Exit;
DeleteCase2(Node);
end;
// Node has a red sibling; swap colors, and rotate so the sibling is the parent
// of its former parent. Continue to one of the next cases
procedure TtdRedBlackTree.DeleteCase2(Node: PtdBinTreeNode);
begin
if IsRed(Node.Sibling) then begin
Node.Parent.btColor := rbRed;
Node.Sibling.btColor := rbBlack;
if Node.IsLeft then begin
RotateLeft(Node.Parent);
end else begin
RotateRight(Node.Parent);
end;
end;
DeleteCase3(Node);
end;
// Node's parent, sibling and sibling's children are black; paint the sibling red.
// All paths through Node now have one less black node, so recursively run case 1
procedure TtdRedBlackTree.DeleteCase3(Node: PtdBinTreeNode);
begin
if IsBlack(Node.Parent) and
IsBlack(Node.Sibling) and
IsBlack(Node.Sibling.LeftChild) and
IsBlack(Node.Sibling.RightChild) then
begin
Node.Sibling.btColor := rbRed;
DeleteCase1(Node.Parent);
end else begin
DeleteCase4(Node);
end;
end;
// Node's sibling and sibling's children are black, but node's parent is red.
// Swap colors of sibling and parent Node; restores the tree properties
procedure TtdRedBlackTree.DeleteCase4(Node: PtdBinTreeNode);
begin
if IsRed(Node.Parent) and
IsBlack(Node.Sibling) and
IsBlack(Node.Sibling.LeftChild) and
IsBlack(Node.Sibling.RightChild) then
begin
Node.Sibling.btColor := rbRed;
Node.Parent.btColor := rbBlack;
end else begin
DeleteCase5(Node);
end;
end;
// Mirror image cases: Node's sibling is black, sibling's left child is red,
// sibling's right child is black, and Node is the left child. Swap the colors
// of sibling and its left sibling and rotate right at S
// And vice versa: Node's sibling is black, sibling's right child is red, sibling's
// left child is black, and Node is the right child of its parent. Swap the colors
// of sibling and its right sibling and rotate left at the sibling.
procedure TtdRedBlackTree.DeleteCase5(Node: PtdBinTreeNode);
begin
if Node.IsLeft and
IsBlack(Node.Sibling) and
IsRed(Node.Sibling.LeftChild) and
IsBlack(Node.Sibling.RightChild) then
begin
Node.Sibling.btColor := rbRed;
Node.Sibling.LeftChild.btColor := rbBlack;
RotateRight(Node.Sibling);
end else if Node.IsRight and
IsBlack(Node.Sibling) and
IsRed(Node.Sibling.RightChild) and
IsBlack(Node.Sibling.LeftChild) then
begin
Node.Sibling.btColor := rbRed;
Node.Sibling.RightChild.btColor := rbBlack;
RotateLeft(Node.Sibling);
end;
DeleteCase6(Node);
end;
// Mirror image cases:
// - "N's sibling S is black, S's right child is red, and N is the left child of its
// parent. We exchange the colors of N's parent and sibling, make S's right child
// black, then rotate left at N's parent.
// - N's sibling S is black, S's left child is red, and N is the right child of its
// parent. We exchange the colors of N's parent and sibling, make S's left child
// black, then rotate right at N's parent.
// This accomplishes three things at once:
// - We add a black node to all paths through N, either by adding a black S to those
// paths or by recoloring N's parent black.
// - We remove a black node from all paths through S's red child, either by removing
// P from those paths or by recoloring S.
// - We recolor S's red child black, adding a black node back to all paths through
// S's red child.
// S's left child has become a child of N's parent during the rotation and so is
// unaffected."
procedure TtdRedBlackTree.DeleteCase6(Node: PtdBinTreeNode);
begin
Node.Sibling.btColor := NodeColor(Node.Parent);
Node.Parent.btColor := rbBlack;
if Node.IsLeft then begin
assert(IsRed(Node.Sibling.RightChild));
Node.Sibling.RightChild.btColor := rbBlack;
RotateLeft(Node.Parent);
end else begin
assert(IsRed(Node.Sibling.LeftChild));
Node.Sibling.LeftChild.btColor := rbBlack;
RotateRight(Node.Parent);
end;
end;
关于algorithm - 使用来自Delphi的Tomes的红黑树实现的Promote()问题,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/16384520/
我在一本书(Interview Question)中读到这个问题,想在这里详细讨论这个问题。请点亮它。 问题如下:- 隐私和匿名化 马萨诸塞州集团保险委员会早在 1990 年代中期就有一个绝妙的主意
我最近接受了一次面试,面试官给了我一些伪代码并提出了相关问题。不幸的是,由于准备不足,我无法回答他的问题。由于时间关系,我无法向他请教该问题的解决方案。如果有人可以指导我并帮助我理解问题,以便我可以改
这是我的代码 public int getDist(Node root, int value) { if (root == null && value !=0) return
就效率而言,Strassen 算法应该停止递归并应用乘法的最佳交叉点是多少? 我知道这与具体的实现和硬件密切相关,但对于一般情况应该有某种指南或某人的一些实验结果。 在网上搜索了一下,问了一些他们认为
我想学习一些关于分布式算法的知识,所以我正在寻找任何书籍推荐。我对理论书籍更感兴趣,因为实现只是个人喜好问题(我可能会使用 erlang(或 c#))。但另一方面,我不想对算法进行原始的数学分析。只是
我想知道你们中有多少人实现了计算机科学的“ classical algorithms ”,例如 Dijkstra's algorithm或现实世界中的数据结构(例如二叉搜索树),而不是学术项目? 当有
我正在解决旧编程竞赛中的一些示例问题。在这个问题中,我们得到了我们有多少调酒师以及他们知道哪些食谱的信息。制作每杯鸡尾酒需要 1 分钟,我们需要使用所有调酒师计算是否可以在 5 分钟内完成订单。 解决
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 8 年前。 Improve
我开始学习 Nodejs,但我被困在中间的某个地方。我从 npm 安装了一个新库,它是 express -jwt ,它在运行后显示某种错误。附上代码和错误日志,请帮助我! const jwt = re
我有一个证书,其中签名算法显示“sha256rsa”,但指纹算法显示“sha1”。我的证书 SHA1/SHA2 的标识是什么? 谢谢! 最佳答案 TL;TR:签名和指纹是完全不同的东西。对于证书的强度
我目前在我的大学学习数据结构类(class),并且在之前的类(class)中做过一些算法分析,但这是我在之前的类(class)中遇到的最困难的部分。我们现在将在我的数据结构类(class)中学习算法分
有一个由 N 个 1x1 方格组成的区域,并且该区域的所有部分都是相连的(没有任何方格无法到达的方格)。 下面是一些面积的例子。 我想在这个区域中选择一些方块,并且两个相邻的方块不能一起选择(对角接触
我有一些多边形形状的点列表,我想将其包含在我页面上的 Google map 中。 我已经从原始数据中删除了尽可能多的不必要的多边形,现在我剩下大约 12 个,但它们非常详细以至于导致了问题。现在我的文
我目前正在实现 Marching Squares用于计算等高线曲线,我对此处提到的位移位的使用有疑问 Compose the 4 bits at the corners of the cell to
我正在尝试针对给定算法的约束满足问题实现此递归回溯函数: function BACKTRACKING-SEARCH(csp) returns solution/failure return R
是否有包含反函数的库? 作为项目的一部分,我目前正在研究测向算法。我正在使用巴特利特相关性。在 Bartlett 相关性中,我需要将已经是 3 次矩阵乘法(包括 Hermitian 转置)的分子除以作
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 这个问题似乎与 help center 中定义的范围内的编程无关。 . 关闭 8 年前。 Improve
问题的链接是UVA - 1394 : And There Was One . 朴素的算法是扫描整个数组并在每次迭代中标记第 k 个元素并在最后停止:这需要 O(n^2) 时间。 我搜索了一种替代算法并
COM 中创建 GUID 的函数 (CoCreateGUID) 使用“分散唯一性算法”,但我的问题是,它是什么? 谁能解释一下? 最佳答案 一种生成 ID 的方法,该 ID 具有一定的唯一性保证,而不
在做一个项目时我遇到了这个问题,我将在这个问题的实际领域之外重新措辞(我想我可以谈论烟花的口径和形状,但这会使理解更加复杂).我正在寻找一种(可能是近似的)算法来解决它。 我有 n 个不同大小的容器,
我是一名优秀的程序员,十分优秀!